Identifying Military Veterans in a Clinical Research Database using Natural Language Processing

> Dr Daniel Leightley King's Centre for military Health Research

forces in mind trust SUCCESSFUL SUSTAINABLE TRANSITION

@_Dr_Daniel | @kcmhr

Introduction

Estimates of the UK's veteran population range from 2.5 – 5million Between 7-22% of veterans experience psychiatric conditions

86% of serving and ex-serving personnel seek some form of support (e.g. from friends and family)

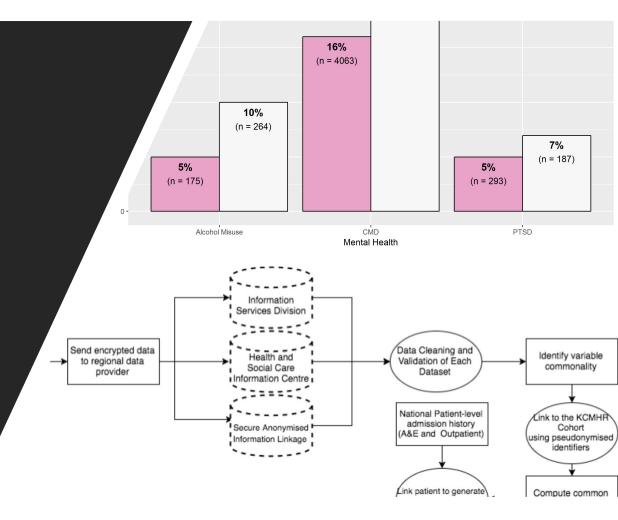
BUT only 55% of serving and exserving personnel seek formal medical support

There is <u>no national marker in England and Wales</u> for identifying veterans in these records.

Previous KCMHR research

KCMHR Cohort: Data linkage between EHRs of England, Scotland and Wales and the KCMHR cohort study. Outpatients, Admitted Patient Care and Accident & Emergency. **NHS number required for linkage**.

APMS comparison: Veteran data extracted from the KCMHR cohort was compared to the Adult Psychiatric Morbidity Survey and the UK Household Longitudinal Study. Limitation: Self-report and anonymised.





What about CRIS?

- Veteran status not routinely collected (optional)
- Potential to be recorded in <u>10+</u> documents types
- Best source for veteran status: <u>free text clinical</u> <u>notes</u>

Important to develop a scalable and automatic approach

Psychiatric History

- Personal details
- Source, mode and reason for referral
- Presenting complaint
- History of presenting complaint
- Past psychiatric history
- Past medical history
- Family history
- Personal history
- Social history
- Drug & Alcohol history
- Forensic history
- Premorbid personality

Example

"Mrs X was born in X. Her father was a Normandy D-Day veteran who had sustained a bullet wound to his left arm during the war. He subsequently worked as a bus driver in and around X. Mrs X describes her upbringing as old-fashioned, traditional and one of poverty. She describes her school years as happy and fun and says she got on well with her parents. She acknowledged that during her teenage years that she was difficult to manage. She met her husband X while on holiday in X; X was stationed there in a military unit conducting NATO exercises. After they began a relationship, in 1983, they moved to X. Mrs worked in various jobs including in a supermarket and as a hotel receptionist, before taking an administrative job in academia."

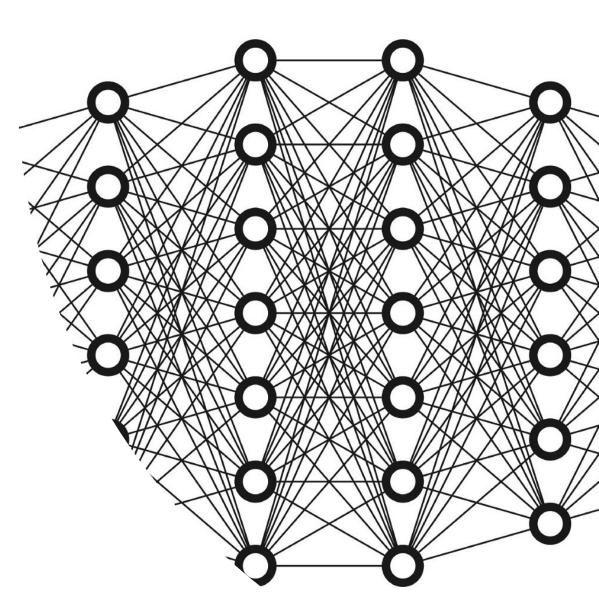
Why Natural Language Processing?

- Manual identification is time consuming and resource intensive
 - <u>6 16 minutes</u>
- Human bias and error
- Volumes of data, document types and linguistic variations
 - Finding the right document(s)
- Knowledge and tracking of military terms and phrases

NLP offers flexibility, scalability and repeatability

NLP and machine learning. Why?

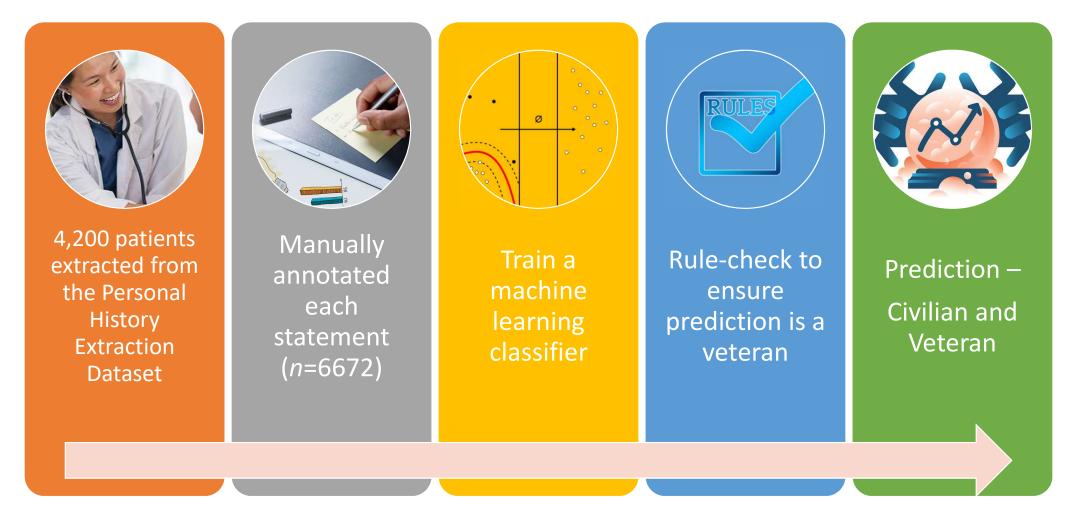
- Examples are easier to create than rules
 - usually from an annotated gold standard corpus
- Rules may miss low frequency cases (edge cases)
 - Single term use
 - Obscure word usage
- Many factors involved in language interpretation
 - Able to model the linguistic relationship between terms and phrases
- Scalable and adaptable to different settings



The Military Service Identification Tool (MSIT)

Natural Language Processing Toolkit

Development of the MSIT



Military Words (n=2611)		Military Phrases (n=2016)			
Word	Frequency (n/%)	Phrase	Frequency (n/%)		
Army	553 (21.20)	Joined the army	167 (8.33)		
National Service	445 (17.08)	Left the army	122 (6.07)		
RAF	225 (8.65)	Demobbed from the army	101 (5.01)		
Navy	166 (6.36)	National service in the army	65 (3.24)		
Royal Navy	124 (4.76)	Two years in the Army	64 (3.19)		
Manual Annotation					

Total Class Numbers: Civilian 5630 Veteran 1042

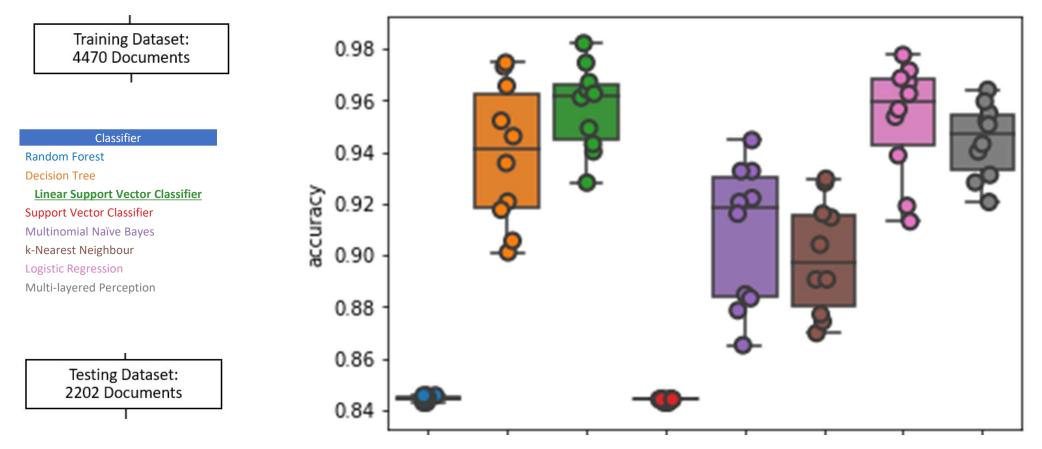
Inter-rater agreement as indicted by a Cohen's kappa of 0.83 for veterans and 0.89 for civilians

Machine learning

• Pre-processing

- Common word removal EXCEPT military specific terms and phrases
- Stemming (removal of affixes)
- Noise removal
- Feature representation
- Machine learning evaluation
 - Sub-set defined (training dataset, *n*=4470), with an equal proportion of civilian/veteran records
 - 8 machine learning algorithms evaluated against training dataset
 - Highest performance selected for further refinement

Machine learning – Selection Results



Post-processing – Veteran Prediction

 For those predicted as being a veteran, a check is performed to ensure the presence of a military specific word.

Army	Navy	
RAF	Royal Air Force	
National Service	Demobbed	
Soldier	Conscripted	
Corporal	Enlisted	
Serviceman	Servicewoman	
Falklands	Iraq	
Afghanistan	Bosnia	

Final Prediction

Performance

	SQL rule-based approach		MSIT			
	Veteran	Civilian	Veteran	Civilian		
Veteran	262	58	290	30		
Civilian	87	1795	27	1855		
	Performance					
Precision	0.81		0.90			
Recall	0.75		0.91			
Accuracy	0.93		0.97			

Thank you

Any questions?

daniel.leightley@kcl.ac.uk

Research team:

PI: Dr Sharon Stevelink | PI: Professor Nicola Fear | PI: Dr Dominic Murphy | Researcher: Dr Daniel Leightley | Researcher: David Pernet

KING'S CENTRE FOR MILITARY HEALTH RESEARCH

ACADEMIC DEPARTMENT OF MILITARY MENTAL HEALTH

Currently submitted to: <u>Journal of Medical Internet Research</u> Date Submitted⁻ Aug 13, 2019 Open Peer Review Period. Aug 13, 2019 – Oct 3, 2019 (closed for review but you can still tweet)

y Tweet

NOTE: This is an **unreviewed** Preprint

Preprint

Identifying Military Veterans in a Clinical Research Database using Natural Language Processing and Machine Learning Daniel Leightley, David Pernet; Sumithra Velupillai; Katharine M. Mark; Elena Opie; Dominic Murphy; Nicola T. Fear; Sharon A.M. Stevelink;

ABSTRACT

Background:

Electronic healthcare records (EHRs) are a rich source of health-related information, with huge potential for secondary research use. In the United Kingdom (UK), there is no national marker for identifying those who have previously served in the Armed Forces, making analysis of the health and well-being of veterans using EHRs difficult.

Objective:

The aim of this study was to develop a tool to identify veterans from free-text clinical notes recorded in a psychiatric EHR database.

Methods:

Veterans were manually identified using the South London and Maudsley Biomedical Research Centre Clinical Record Interactive Search – a database holding secondary mental health care electronic records for the South London and Maudsley National Health Service Trust. An iteratively developed Natural Language Processing and machine learning approach called the Veteran

f 🗾 in 👂

📼 Citation

Please cite as: Leightley D, Pernet D, Velupillai S, Mark KM, Opie E, Murphy D, Fear NT, Stevelink SA Identifying Military Veterans in a Clinical Research Database using Natural Language Processing and Machine Learning JMIR Preprints. 13/08/2019:15852 DOI: 10.2198/preprints.jmir.org/preprint/15852 URL: https://preprints.jmir.org/preprint/15852

Current Preprint Settings (as selected by the authors) (1)

1. When the manuscript is submitted, allow peer review from:

 (a) Anybody (open community peer review)
(b) Editor-selected reviewers (closed peer review)

2. When the manuscript is submitted, display the preprint PDF to:

(a) Anybody, anytime
(b) Logged-in users only
(c) Anybody, anytime (title and abstract only)
(d) Nobody

3. When the manuscript is accepted, display the accepted manuscript PDF to:

(a) Anybody, anytime
(b) Logged-in users only
(c) Anybody, anytime (title and abstract