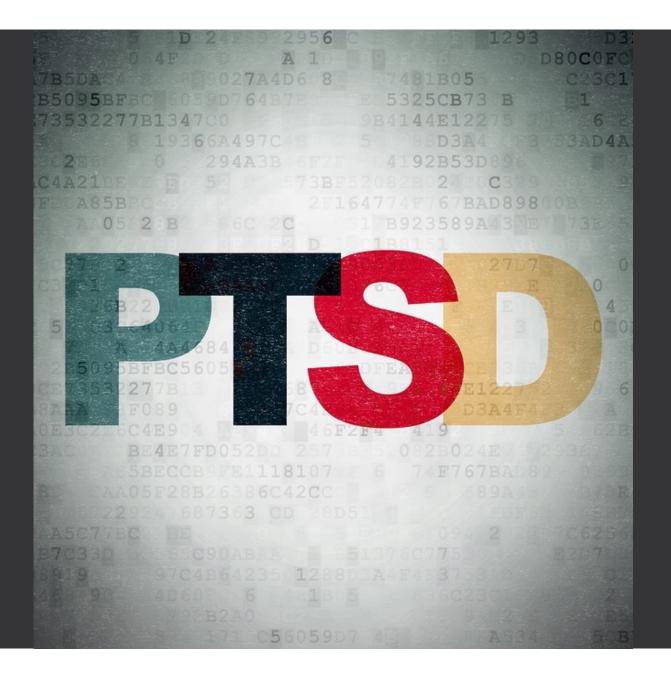


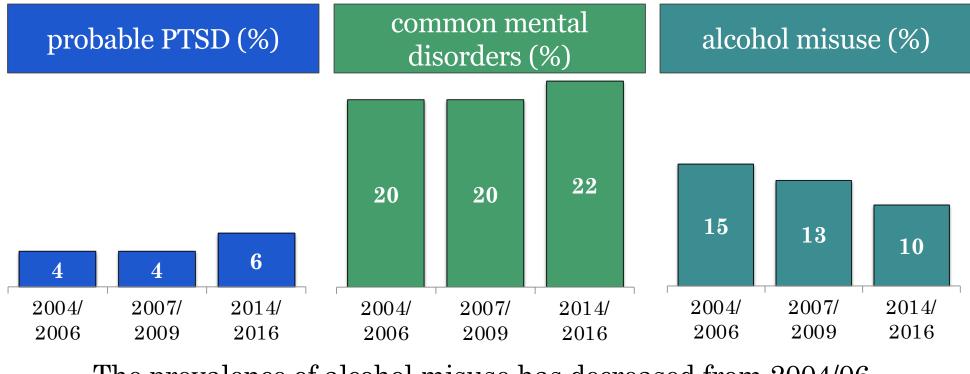
Managing the Mental Health of the Armed Forces The role of digital health technologies and personalised healthcare

Dr Dan Leightley

King's College London King's Centre for Military Health Research



King's Centre for Military Health Research

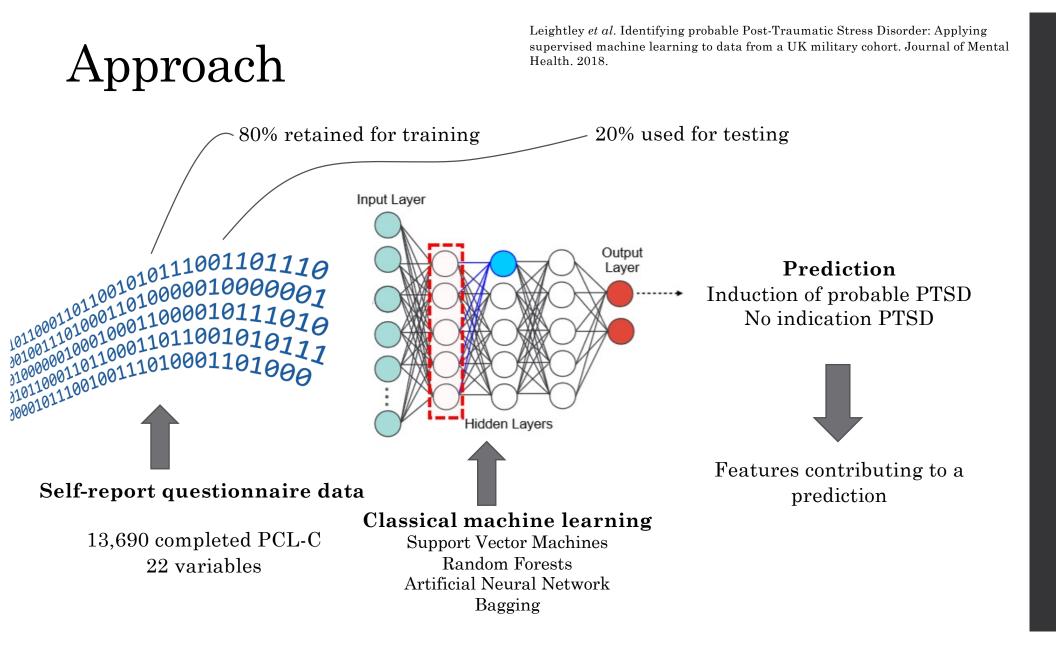

- Aim: to produce high quality research which has a positive impact on the health & wellbeing of the armed forces community.
- **Multi-disciplinary team in:** computer science, psychiatry, epidemiology, military history, psychology, public health.
- Over 1000+ refereed articles published to-date on military health.
- Co-located with ADMMH (Academic Department of Military Mental Health) – composed of members of the British Armed Forces.

Identifying probable PTSD using machine learning

PTSD compared to other disorders

The prevalence of alcohol misuse has decreased from 2004/06, whereas the prevalence of PTSD has increased from 4% to 6%

See **Stevelink** *et.al.* Mental health outcomes at the end of the British involvement in the Iraq and Afghanistan conflicts: a cohort study: The British Journal of Psychiatry (2018) 213, 690–697. doi: 10.1192/bjp.2018.175



Machine learning as an aid...for now

• The risks:

- **Perception**: Deep Mind and Greenwich hospital
- Understanding: 'Black box'
- Accountability: 'Blame'
- Human factor: 'Loss of jobs'

Work on-going to mitigate these risks

Approach

Leightley *et al.* Identifying probable Post-Traumatic Stress Disorder: Applying supervised machine learning to data from a UK military cohort. Journal of Mental Health. 2018.

	80% retained for training 20% used for testing							
	Classifier	Accuracy	Sensitivity	Specificity	MCC			
100013	Support Vector Machines	0.91	0.70	0.92	0.74			
00111 000001 110001 010111	Random Forests	0.97	0.60	0.98	0.64			
	Artificial Neural Networks	0.89	0.61	0.92	0.45			
Sel	Bagging	0.95	0.69	0.96	0.55			
13,690 completed PCL-C Support Vector Machines Random Forests Artificial Neural Network								

Bagging

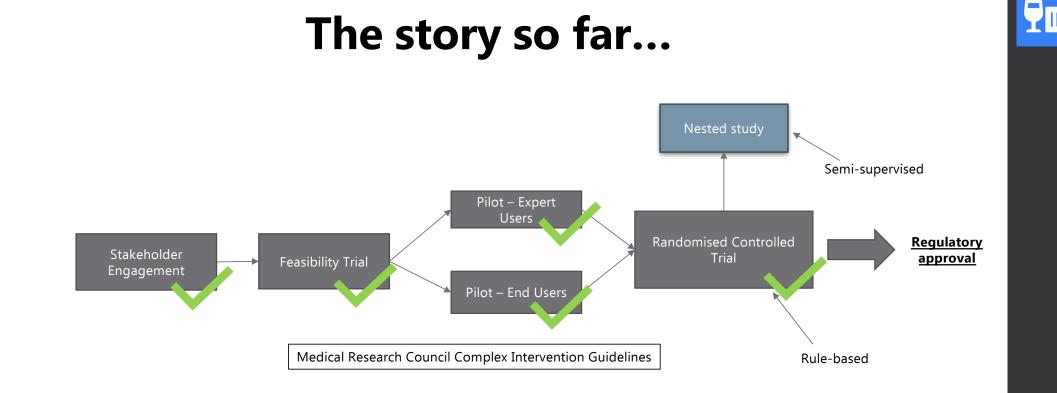
Approach

Leightley *et al.* Identifying probable Post-Traumatic Stress Disorder: Applying supervised machine learning to data from a UK military cohort. Journal of Mental Health. 2018.

Machine learning analysis is helping us to determine WHICH variables are most important

	Classifier	Rank 1	Rank 2	Rank 3	Rank 4	
100011 001110 000001 010001 010111	Support Vector Machines	AUDIT Score	GHQ-12 score	Age (years)	Consumes alcohol (y/n)	
	Random Forests	Gender	AUDIT Score	GHQ-12 score	Service type	
	Artificial Neural Networks	GHQ-12 score	AUDIT case (y/n)	AUDIT Score	Consumes alcohol (y/n)	
Sel	Bagging	Age	Consumes alcohol (y/n)	Smoking	GHQ-12 score	
-	Guyon 10 & Flisseeff	$\Delta^{\rm L}$ (2003) An Shtrodu	veriable and	Feature Selection	ournal of Machine	

Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. Journal of Machine Learning Research, 3, 1157–1182 Artificial Neural Network Bagging


Drinks:Ration - an Android and iOS app for Armed Forces personnel

FEEL BETTER AND SAVE MONEY BY DRINKING LESS ALCOHOL

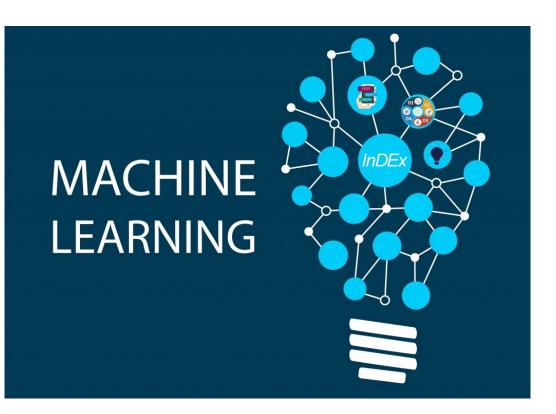
ALCOHOL USAGE IN THE UK ARMED FORCES 1 June 2016 - 31 May 2017 ALCOHOL **RISK CATEGORIES ALCOHOL ADVICE** SCREENING TOOL 61% scored 5+ indicating that they may potentially be at increasing risk or above of alcohol related harm 74% (n = 109,459) of 80% of personnel who (ranging from poor mood, accidents and Regular UK Armed Forces reduced fitness, to possible long-term illness) scored 1+ had been given personnel had completed a an alcohol advice leaflet You would score in this category if you drank: questionnaire (AUDIT-C). 3 glasses of wine twice a week ΠD (1% declined) 4 pints of beer on one occasio 2% scored 10+ indicating that they may potentially be 63% of personnel who This is the first large at increasing or higher risk and scored 5+ had been given scale use of the AUDIT-C should be advised to see their GP advice about reducing their questionnaire in a military You would score in this category if you drank: drinking (alcohol brief population 3 pints of beer 5 times a week intervention)

Is there a problem with drinking in the UK military?

Evaluating the efficacy of a mobile app (Drinks:Ration) to reduce alcohol consumption in a help-seeking military veteran population: Randomised Controlled Trial. Daniel Leightley, Charlotte Williamson, Roberto Rona, Ewan Carr, James Shearer, Jordan D. Davis, Amos Simms, Nicola T. Fear, Laura Goodwin and Dominic Murphy. *Journal of Internet Medical Research: mHealth & uHealth*, 2022.

A Qualitative Evaluation of the Acceptability of a Tailored Smartphone Alcohol Intervention for a Military Population: Information About Drinking for Ex-Serving Personnel (InDEx) App. Jo-Anne Puddephatt, Daniel Leightley, Laura Palmer, Norman Jones, Toktam Mahmoodi, Colin Drummond, Roberto Rona, Nicola T Fear, Matt Field and Laura Goodwin. *Journal of Internet Medical Research: mHealth & uHealth*, 2019.

A Smartphone App and Personalized Text Messaging Framework (*InDEx*) to Monitor and Reduce Alcohol Use in Ex-Serving Personnel: Development and Feasibility Study. Daniel Leightley, Jo-Anne Puddephatt, Norman Jones, Toktam Mahmoodi, Zoe Chui, Matt Field, Colin Drummond, Roberto J. Rona, Nicola T Fear and Laura Goodwin. *Journal of Internet Medical Research: mHealth & uHealth*, 2018.

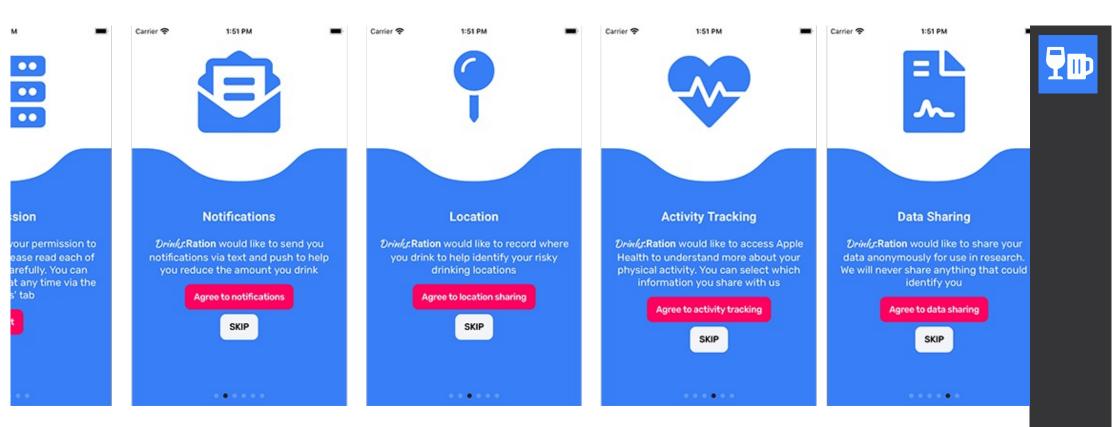


How is *Drinks*:Ration different to others?

Focused on binge drinking and problematic behaviours	Focused on shorter term outcomes e.g. impact on relationship	Use implementation intentions goal setting
Daily personalised text messages and/or push notifications	Weekly assessments of mood and drinking behaviours to inform personalisation	Content tailored to target veterans

Behavioural Change Theory underpins all Drinks.Ration components

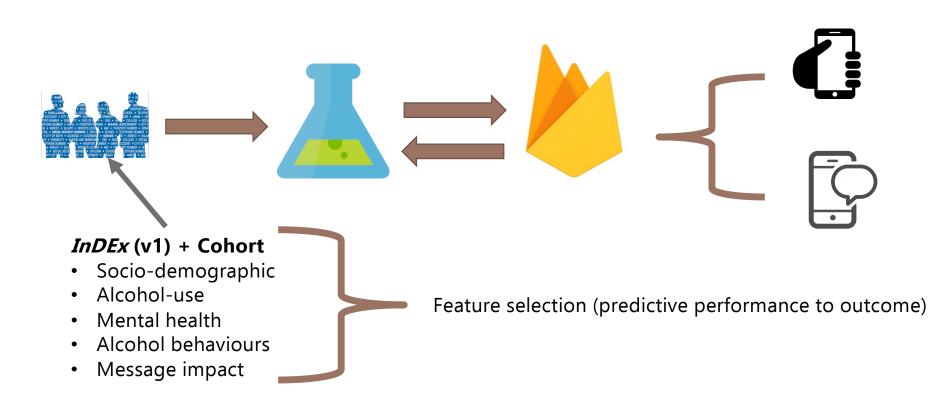
Machine Learning (semi-supervised)

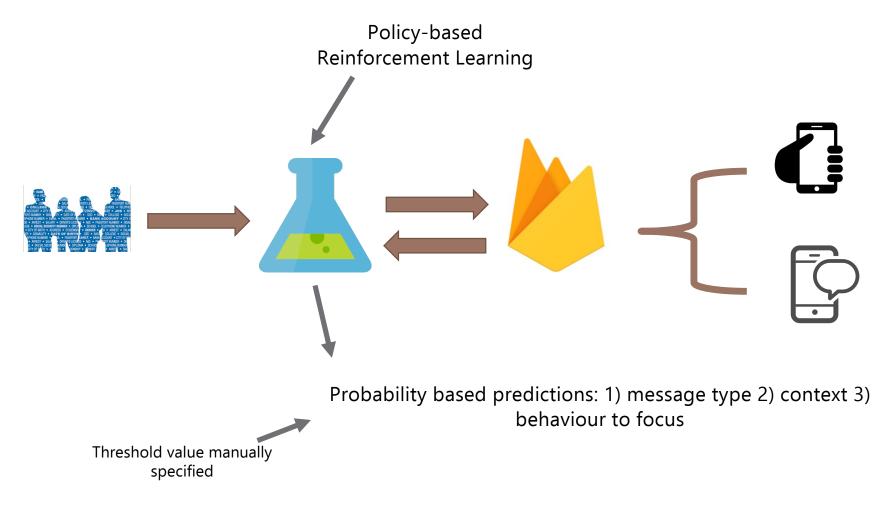

- User behaviours (insights)
- Stage transition (progress)
- Messaging (adherence)

Note: Users do not directly interface with *MLaaS*

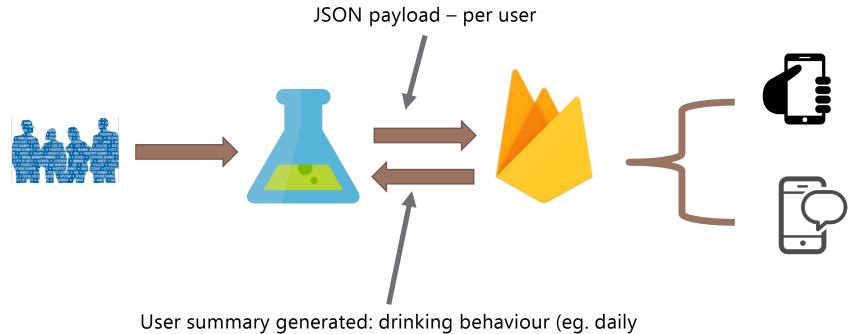
Data problem: user persona data (synthetic)

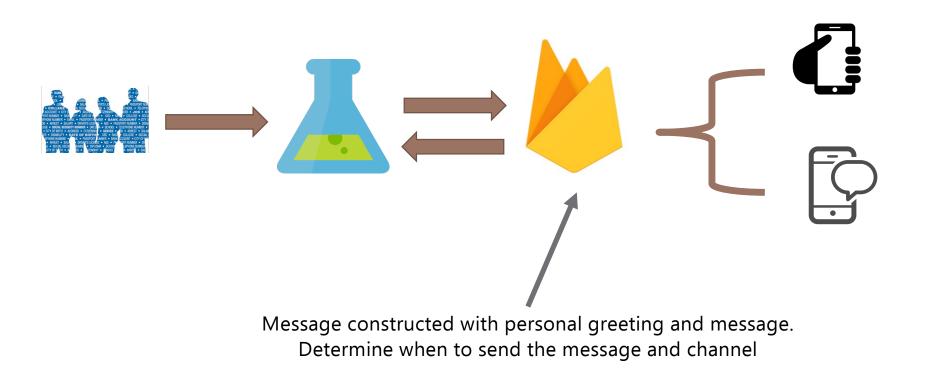
Signal problem: what is 'meaningful'



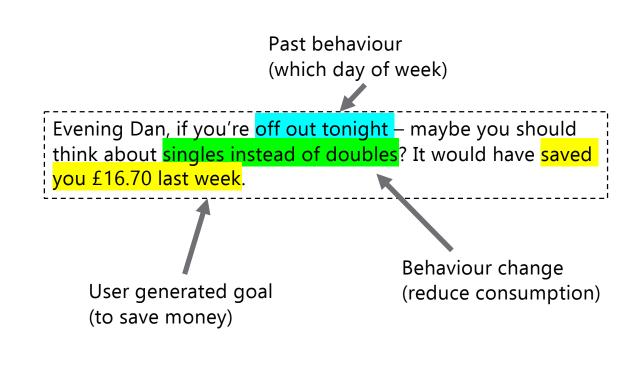

- Socio-demographics
- Self-reported mental and physical health (weekly)
- Drinking behavior (location, time, type)
- Goals (and barriers to goals)
- Physical activity (Google Fit/Apple Health)
- Notification interactions
- App usage

DrinksRation Data





aggregates, when, where, who with, triggers)



Evening Dan, if you're off out tonight – maybe you should
think about singles instead of doubles? It would have saved
you £16.70 last week.

Using ANN via MLaaS constrained rules.

Does it actually work?

Previous study

Reported alcohol	Week 1	Week 2	Week 3	Week 4
consumption				
Drinking days	4.0	3.0	3.0	3.0
Drink free days	3.0	4.0	4.0	4.0
Units per drinking day	56	65	4 54	47
Units consumed	22.9	20.4	18.1	15.9
Alcoholic drinks per drinking day	2.0	3.0	2.0	2.0
Binge drinking days per week	2.0	2.0	1.0	2.0

Median.

MAVERICK app

7:58 🕈 🗖	8:00	🗢 🖿	8:01		🗢 🖿
<image/> <section-header><section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header></section-header>		on hission to function of the next screens your choice at any ings' tab	Recognizing	Questionnaire	n is complex,
		_	-		

Google Play

iOS

Legalisation of cannabis in California

- Legal for medical use since 1996, and for recreational use since 2016.
 - Heavy taxation.
- Can be purchased from any recreational cannabis dispensary. ID required.
- Can purchase a maximum of 28.5 grams.
- You do not need to justify your use of cannabis.


MAVERICK study

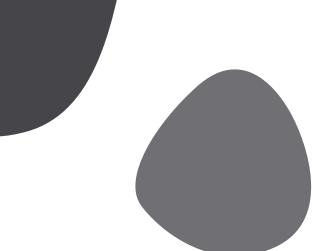
Focus: Recently discharged veterans with a history of PTSD and cannabis use who are not under treatment for either condition.

- 1.Use machine learning algorithms to determine whether passive data, alone and/or in conjunction with active data collection, can accurately predict clinically significant increases in PTSD symptoms and cannabis use.
- 2.Assess interplay between PTSD and problematic cannabis use.
- 3. Understand the feasibility and acceptability of monitoring symptoms using passive vs. active data collection in clinical practice to non-treatment-seeking veterans.

Participant journey

Participants take part for 84 days

MAVERICK app


7:58	२ ➡ 8:00		8:01 ♀ I < Back Questionnaire Please tell us a bit about yourself. Recognizing that sexual orientation is comple	■ ●	
		Permission	which of these terms best describes your sexu orientation? Straight/heterosexual Gay Lesbian Bisexual		
Please selec Scan QR By creating an acc	t an option to continue properly. Pleas carefully. You	eds your permission to function se read each of the next screens ic an change your choice at any e via the 'settings' tab Next	Questioning Asexual Other		
			Skip	iOS	≽ Google Play
					-

Thank You

Do you have any questions?

daniel.leightley@kcl.ac.uk

www.kcmhr.org

