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Abstract—There is a clear advantage to developing automated
systems to detect human motion in the field of computer vision
for applications associated with healthcare. We have compiled a
diverse dataset of clinically-relevant motions using the Microsoft
Kinect One sensor and release the dataset to the community as an
open source solution for benchmarking detection, quantification
and recognition algorithms. The dataset, namely Kinect 3D Active
(K3Da), includes motions collected from young and older men and
women ranging in age from 18 - 81 years. Participants performed
standardised tests, including the Short Physical Performance
Battery, Timed-Up-And-Go, vertical jump and other balance
assessments which were recorded using depth sensor technology
and extracted to generate motion capture data, sampled at
30 frames-per-second. Preliminary evaluations using Support
Vector Machines, Random Forests, Artificial Neural Networks
and Boltzmann Machines show age-related differences in many
of the movements. These results demonstrate the relevance of the
dataset to support benchmarking of algorithms associated and/or
intended for use in a healthcare setting.

Index Terms—Kinect One, motion capture, dataset, healthcare,
benchmarking

I. INTRODUCTION

Automatic methods for detection, recognition and quantifi-
cation of human movements has become more accessible due
to increased availability of low-cost multi-modality marker-less
capturing devices [1], [2]. This provides potential to develop
applications suitable for use in healthcare settings to detect
problems that patients have in coordination of movements [3]–
[6]. For example, Alankus et al. [7] and Wang et al. [5]
devised techniques to characterise movements in stroke and
musculoskeletal patients, respectively. However, both utilised
publicly available datasets that were intended for use in gaming
populations, restricting their broader application. Indeed, exist-
ing datasets (e.g. [8]–[10]) were captured for specific purposes,
such as daily living, first person or gestures, principally for use
in the entertainment and gaming industries. One of the most
popular datasets, Carnegie Mellon University Motion Capture
Database (CMU MoCap) [11] includes 2600 trials across
23 action categories captured using a marker-based Vicon
system. While the numbers of trials and action categories were
diverse, rigid recording protocols captured movements from a
university student population. A similar dataset named G3D
[12] (later complemented with G3Di [13]) captured 200 trials
across 20 categories from 10 participants using a Microsoft
Kinect 360 sensor. While this sensor is affordable and portable,

the database does not provide enough diversity. Currently, none
of the available datasets specifically includes movements based
on common clinical assessments of patient groups and this
limits the development of tools and applications for use in
healthcare settings.

Movement problems experienced by a diverse group of
patients include slow and altered gait, difficulties changing
from standing-to-sitting or sitting-to-standing and balancing.
These problems increase the risk of disability and falls which
have major consequences for quality of life and healthcare
provision. Specialist nursing staff, physiotherapists and geri-
atricians routinely assess movements using standardised tests
such as the Short Physical Performance Battery (SPPB [14]),
Timed-Up-And-Go (TUG [15]), Six-Minute Walk [16] and
Balance (e.g. Tinetti [17]). However, manual-assessments re-
quire trained staff and variations between assessor ratings and
experience may cause problems. Computer-based analysis of
these movements can standardise the assessments and may
be more resource-effective. Automated assessments requires
algorithms to detect joint angles in different body segments,
stride length and foot positioning, whilst also accounting for
the diversity that exists across populations in terms of body
size and shape.

Depth-sensors have been used several times for the assess-
ment of balance [6], [18]–[21] by extracting simple gait-based
vectors from a skeletal stream to provide basic stability-based
single value scores. Using the Microsoft Kinect for Xbox
360, Yang et al. [21] showed that detection of the centre-
of-mass was correlated with standard assessments performed
on a force platform. Classifying, recognising and segmenting
human balance can be defined into two categories: model-
based and model-free [22]. Model-based approaches use pre-
defined models of the underlying kinematics in order to
represent the data and capture balance. This approach, while
computationally more expensive, gives representations that
are more informative while also being view point, style,
anthropometric and subject invariant. Static and dynamic fea-
tures consist of height, stride length, velocity and execution
duration [23], [24]. Model-free approaches, otherwise referred
to as appearance-based methods, rely on low-level processing
of image data to extract the silhouette or motion-history-
images of the segmented human body which can be used to
encode human motion characteristics [25]. While these are



computationally efficient, they have significant drawbacks in
view point, lighting, occlusion and preservation of dynamic
kinematics of human motion.

There are several techniques to determine the complex
spatio-temporal features of a persons walking style [26], [27].
Sinha and Chakravarty [28] identified key poses relevant to
gait using machine learning, although subjects were used for
both learning and decision stages, making their predictions
more favourable, but limiting the generalisation to a diverse
population. Gianaria et al. [24] extracted static and dynamic
features from a sequential time series of skeletal data to
describe the subjects posture (e.g. height, stride length, sway).
However, none of these techniques gives detailed quantitative
feedback, as would be needed in a healthcare setting.

To address the limitations in available datasets that do
not contain healthcare-related motions, we have established
a dataset, Kinect 3D Active (K3Da), to capture balance,
walking, sitting and standing from a diverse population of
young and older adults. The dataset is readily available from
http://www.k3da.leightley.com. The motions were based on
common clinical assessments used to assess movements in
disease and frailty. Here, our aim is to describe the study
design and release of the dataset for benchmarking of human
movement detection, quantification and recognition algorithms.
We also demonstrate two possible applications in motion
recognition as well as quantifying simple differences in move-
ments between the young and older populations. Finally, we
have released a basic toolset to facilitate novel data capture,
viewing and motion analysis.

II. RELATED DATASETS

There are a vast number of datasets that exists for bench-
marking proposed techniques, these datasets can be defined
into three categories. Firstly, those that are simply action
datasets for use in recognition such as G3D [12] which contain
simple, basic level action sequences obtained in a controlled
environment. Secondly, security/surveillance datasets such as
i-Lids [29] which are captured in realistic environments such
as airports and bus stations. The third type are movie datasets,
which are obtained from movie scenes such as Hollywood2
[30]. to the authors’ knowledge, there are no healthcare-related
datasets in existence for benchmarking clinically-related mo-
tions.

In the computer vision community there exists multiple
datasets composed of different modalities such as Euler angles,
RGB images and depth images. For MoCap data these are
composed entirely of two modalities, namely marker-based
systems such as Vicon and marker-less systems such as Mi-
crosoft Kinect (360/One) sensor.

Marker-based systems require markers to be placed on
the user at anatomical significant locations. Using multiple
cameras, these markers are tracked resulting in Euler angles
that are relative to the camera coordinate system. CMU MoCap
[11] is the most popular marker-based dataset in use. It consists
of a large amount of game-orientated trials recorded in a lab-
based setting. The HDM05 [31] contains a limited number of

realistic fitness workout trials captured by five participants, the
dataset contained a strict recording protocol resulting in each
trial being similar in nature. Finally, TUM Kitchen dataset [32]
consists of multi-modality dataset including video and MoCap.
The dataset captures participants in a daily living scenario
performing specific tasks, with participants asked to perform
motions as they would in the home. However, these marker-
based datasets lack the action sequences and interactions that
are necessary in a clinical setting. Further, their rigid capture
protocols results in data being similar across multiple trials by
different subjects.

Recent technological advancements has led to the avail-
ability of low-cost and easy to use image sensor technology
(e.g. Microsoft Kinect 360/One, ASUS Xtion). These systems
are marker-less, where the human skeleton is extracted from
depth or video sequences to provide x, y and z coordinates for
specific locations. The G3D [12] dataset provides image, depth
and skeleton data captured using a Microsoft Kinect 360. The
dataset contains a range of gaming actions from 10 participants
performing 20 gaming actions in a controlled setting. More
recently, the authors of [12] introduced the G3Di [13] dataset
which captured 12 participants split into 6 pairs in a mul-
tiplayer game setting. Finally, the MSRDailyActivity3D [33]
consists of 10 participants performing daily living activities
such as eating or reading a book. As is common with other
datasets, the MSRDailyActivity dataset was captured using a
rigid protocol to ensure uniformity in action trials.

While datasets exist to reflect daily living and gaming
actions/activities. To our knowledge, this dataset is the first
proposed to provide clinically supported motion sequences
from both the young and elderly using depth sensor technology.
Further, this is the one of the first dataset introduced using
the latest edition of the Microsoft Kinect One sensor directly
focused at benchmarking medical frameworks.

III. MATERIALS AND METHODS

A. Participants and ethical approval

The study was approved by the Research Ethics Committee
at Manchester Metropolitan University (approval SE121308).
All participants gave signed informed consent to take part
in data collection and for their depth and skeleton data to
be published. The acquisition sessions consisted of 13 tests
based on the SPPB, TUG and additional tests of balance and
power output (Table. I). These clinically relevant assessments
of mobility and physical performance were led by experienced
human physiologists and followed standardised protocols.

Fifty-four participants (32 men and 22 women) were re-
cruited with a mean age of 25.53 (Standard Deviation (SD)
of 23.54) and minimum/maximum of 18/81 yrs and a diverse
range of body compositions.

Due to the large inter-individual variability in age and phys-
ical capabilities, the dataset contains large motion variation in
the skeletal pose. For example, during the chair rise, some
participants could easily perform five chair rises very quickly
without losing balance or performance, while others (mainly
older men and woman) experienced a deterioration of their



TABLE I
DETAILED CAPTURE PROTOCOL TEST DESCRIPTION FOR EACH TRIAL THAT IS CONTAINED WITHIN THE K3DA DATASET.

Test Capture Protocol Instructions or Constraints
Balance (open eyes) The participant stood with their feet as close together as possible

side-by-side. They balanced with their eyes open and arms extended
horizontally to be parallel with the floor

Test terminated after 10 seconds

Balance (closed eyes) The participant stood with their feet as close together as possible
side-by-side. They balanced with their eyes closed and arms extended
horizontally to be parallel with the floor

Test terminated after 10 seconds

Chair Stand The participant started from a seated position. When instructed, they
had to stand up so that the legs were fully extended, and then sit
down again. This was repeated five times with the aim to complete
five complete stand/seat cycles. The arms were held across the chest
so that all of the power needed to stand and sit was produced by the
legs muscles

Perform five chair rises as quickly
as possible. Test terminated after
60 seconds.

Jump (low power) The participant stood with their legs fully extended and slightly less
than shoulder width apart. When instructed, they produced a counter
movement jump by bending at the knees and then performing a low-
level jump

Perform and low-level jump

Jump (maximum power) The participant stood with their legs fully extended and slightly less
than shoulder width apart. When instructed, they produced a counter
movement jump by bending at the knees and then performing a
maximal-level jump

Perform a maximal-effort jump

One Leg Balance (closed eyes) When instructed, the participant balanced with one leg (participant
preference) 6 inches off the ground with their eyes closed and arms
extended horizontally

Test terminated after 10 seconds or
when the second leg touched the
ground

One Leg Balance (open eyes) When instructed, the participant balanced with one leg (participant
preference) 6 inches off the ground with their eyes open and arms
extended horizontally

Test terminated after 10 seconds or
when the second leg touched the
ground

Semi Tandem Balance The participant was asked to place one foot behind the other so that
the big toe of the back foot was touching the side of the heel of the
front foot. Their arms were fully extended horizontally

Test terminated after 10 seconds

Tandem Balance The participant placed one foot directly behind the other so that the
big toe of the back foot was touching the back heel of the front foot.
The arms were fully extended horizontally

Test terminated after 10 seconds

Walk towards (towards Kinect) The participant started from a standing position and walked forwards
in a straight line towards the sensor at their usual walking speed

walk at ’usual’ walking speed

Walk away (from Kinect) The participant started from a standing position very close to the
sensor and walked away from the sensor in a straight line at their
usual walking speed

walk at ’usual’ walking speed

Timed Stand Up and Go The participant started in a seated position. They had to rise from the
chair, walk 3 meters, turn around and walk back to sit on the chair
again

walk at ’usual’ walking speed

Hopping (One-Leg) The participant was asked to hop with one leg (participant preference)
on the spot multiple times

Test terminated after 10 seconds

performance throughout the test. A large number of motion
variations also exist within the dataset. This is because no
individual will perform the test in exactly the same way on
each attempt, even when the test requires multiple repetitions.
For example, small differences in gait cycle during walking or
sway during balancing can be detected by the Kinect One.

Data collection and storage

The Microsoft Kinect One depth sensor was fixed horizon-
tally to a tripod at a height of 0.7 m and all assessments were
confined to within range of the sensor. Room furniture was
removed to ensure maximum visibility and room lighting was
standardised. The participants were provided with a maximum
of three attempts to complete each short task (which is
common in a clinical setting). A countdown timer was created
to prompt the participant to start each test and sessions were
recorded and stored automatically.

The Microsoft Kinect One sensor coupled with the Mi-
crosoft Windows Software Development Kit [34] synchronised

capture of depth and skeleton streams at 30fps. Each data
stream was retrieved and stored in a unique file for each
time period with a unique millisecond timestamp. The raw
storage format was selected for the depth stream, the raw
information contains the depth of each pixel in millimetres.
The 16-bits of depth data contain 13 bits for depth and 3
to identify the person-index. A text format was selected for
storing the skeleton information with participants position,
pose and relative depth map coordinates. The pose includes
25 joints and two action states as defined by Microsoft. The
participants overall and joint positions are given as x, y and
z coordinates in meters. These positions are also mapped into
depth coordinates. The skeleton data includes a joint tracking
state, shown as ’tracked’, ’not tracked’ and ’inferred’.

The depth and skeletal streams were extracted from the
Kinect One data stream while the participant performed the
movements. The Microsoft Kinect One sensor provided a
512 × 424 depth image up to 30fps. Skeletal time series
consisted of 25 3D orthogonal (x, y, z) locations. An example



Fig. 1. A figure representing the skeleton structure extracted from the Kinect
One. There are a total of 25 tracked joints using the algorithm presented in
[35].

representation is shown in Fig. 1. Frame data were extracted
in real time using the technique of Shotton et al. [35], which is
part of the Microsoft SDK [34]. The developed dataset, K3Da,
currently contains 525 tests from 54 participants, although
more will be added over time. This has resulted in over 225,000
frames of depth and skeleton data. Each test has been encoded
with age, height and a labelled matrix of outlier (noisy) frames.

Basic toolset

We have included a suite of tools to visualise and utilise
the datasets. This includes a Kinect One Recorder (Desk-
top Application) capable of recording the skeletal and depth
streams from the Microsoft Kinect One Sensor at 30fps; a
Kinect One Visualiser which is a Matlab-based program to
visualise the captured data (Fig. 2); and a Kinect One Analysis
(Matlab-based program) interface that includes joint profiling
and measurement of distance travelled.

IV. DATASET EVALUATION

To identify and recognise which test case is being observed,
we have adapted a method previously described [1] that uses
the exemplar paradigm coupled with clustering techniques
for recognition in real-time. To that end, it is important to
identify the correct action before analysis on the action can
be undertaken. Briefly, pjt denote the 3D position of a set of
joints j at a given frame t e.g. pjt = {xj

t , y
j
t , z

j
t }t=1:T

j=1:J , with T
represents the number of frames. Therefore, a motion can be
seen as a set of poses e.g. M = {p1, p2, . . . , pT }, p ∈ R3∗J .

Instead of using a pseudo-invariant action space or looking
for a reference system which is the most discriminative for
each motion class, like subspace approaches, we have used
a body relative coordinate system based on the skeletal pose
itself. The relative motion of the body parts with respect to the
torso is capable of describing the action. Therefore, we first
selected a body relative reference joint and use it to redefine
the 3D coordinates of all joints for each time period. The new
frame of reference (p̄t) is described by the hip centre origin
e of frame t and base vectors {x, y, z} e.g. ex,y,z

t , which is
demonstrated in Fig. 3. The transformation of coordinates in
the Kinect world to the body relative pose is undertaken by
subtracting the ex,y,z

t from each joint of time t.

Fig. 3. A figure representing the global and local coordinate system of the
Microsoft Kinect One.

Exemplar selection

Human poses may be semantically, but not necessarily
numerically similar, yet represent the same time instance of
a motion. To further complicate matters, to identify and group
similar poses manually is a time consuming and arduous task.
In the approach adopted from [1], we have selected a centroid
method, namely k-means clustering [36] to group a set of
poses in M, into similar groups. The k-means algorithm is
iterative in nature, starting with an initial estimation of the
centroid for each cluster and continues until convergence of
a motion sequence into an assigned number of k clusters.
However, while k-means is robust for unravelling compact
sequences, such as MoCap, accurate estimation of the number
of clusters is crucial. There is no single solution to estimating
the optimum k value, with several works selecting k man-
ually (e.g. [37], [38]) or using automatic selection methods
(e.g. [39]–[41]). To select the optimum k, the Elbow method
[41] was used to represent the within-cluster-sum-of-squares
(WSS). The purpose is to cluster a sequence for a single test
class into k clusters. A useful aspect of k-means process is
that each cluster characterises a phase of the test case, as
demonstrated in Fig. 5. In order to select a delegate for each
k cluster, a ranking scheme for each pose according to the
City Block metric (also referred to as Manhattan distance) is
utilised. The equivalence D between any two poses p̄m and
p̄n in a cluster is measured using the total distance amongst
corresponding joints, defined as

D(p̄m, p̄n) =

J∑
j=1

[p̄jm − p̄jn] (1)

where D is the distance between any two poses of the same k
cluster. The delegate exemplar is a pose which has the lowest
distance average between all of the poses within the cluster.
Therefore, for each test class, a set of exemplars representing
the different phases is selected to form the training set.



Fig. 2. Left-to-right: raw depth image (512 x 424) and skeleton representation (25 tracked joint locations)

TABLE II
BENCHMARK IDENTIFICATION RESULTS: RECOGNITION RESULTS FOR

EACH MACHINE LEARNING METHOD, MODEL TRAINING AND
RECOGNITION TIME. WHERE s IS SECONDS, ms IS MILLISECONDS.

Method Rate (%) Model training
(s)

Recognition
execution (ms)

SVM 85.53 1.89 4.9
RF 62.89 2.45 1.5

ANN 82.42 4.56 1.78
GRBM and SVM 79.64 3.87 7

GRBM and RF 71.11 4.09 8

V. RESULTS

For preliminary evaluation of the dataset and the abil-
ity to identify each test case, we utilised Support Vectors
Machines (SVM) [42], Random Forest (RF) [43], Artificial
Neural Networks (ANN) and Gaussian Restricted Boltzmann
Machines (GRBM) [44] with 10-fold cross validation on each
method. Unlike other approaches that use ”leave one out”
method, we have sought to generate a more representative
result by randomly selecting a 40/60 training and testing set
split. This reflects real-world situations where testing will
always outweigh training data. This method relies on the
appropriate selection of the k parameter for k-means. Initial
results are shown in Table II. This approach removed irrelevant
information, resulting in a very small training set.

Therefore, complexity and in turn model training times
were reduced to only a few seconds. SVM and ANN had
high recognition success rates, with the other techniques
obtaining respectful results. SVM had much shorter training
time than ANN, while conversely recognition execution time
was shorter for ANN than for SVM. Conversely, each GRBM
approach had a significantly longer recognition time. The k,
the number of clusters for each sequences was automatically
generated using the methoed defined above, the average k
across the model was 13 (SD = 4). Fig. 4 shows an example
of k-means segmenting a MoCap sequence into distinct
cluster groupings.

Walk towards (towards Kinect): Participants started from

Fig. 4. Action label for each frame composing of the Walk action segmented
into stride from a Support Vector Machine.

TABLE III
WALKING TOWARDS KINECT ONE - INITIAL ANALYSIS: AVERAGE HUMAN

MOTION ANALYSIS RESULTS FOR YOUNG AND OLDER PARTICIPANT
GROUPS UNDERTAKING A WALK. WHERE s IS SECONDS, m IS METERS AND

mps IS METER-PER-SECOND.

Group (test
case)

Time taken (s) Distance
Travelled (m)

Speed (mps)

Young (14) 2.22 (SD=0.046) 3.06 (SD=0.27) 1.41 (SD=0.21)
Older (10) 2.40 (SD=0.34) 3.08 (SD=0.19) 1.3 (SD=0.16)

a standing position and walked forward in a straight line
towards the Kinect One sensor at their usual walking speed.
A total of 24 test cases were used to compile results. The
average time taken, walking speed and distance travelled in
the groups of young and older people are presented in Table
III. These results demonstrate a small divide between young
and older people.

One Leg Balance (closed eyes): Participants balanced with
one leg (participant preference) 6 inches off the ground.
Then, they balanced with their eyes closed and arms extended
horizontally to be parallel with the floor for a maximum of
10 seconds. A total of 70 test cases were used to compile
the results. Balance and stability are important factors in
the vast majority of daily tasks. Detecting an identifying
potential issues in relation to balance, between young and
older groups, but also within group differences can aid in
identifying age-/gait-related deficits. Table IV shows the data
from trials in which subjects balanced on one leg with their
eyes closed. Older people had larger movements compared
with young and fewer older people were able to achieve the
target of 10 seconds.



TABLE IV
ONE LEG BALANCE - EYES CLOSED - INITIAL ANALYSIS:AVERAGE

HUMAN MOTION ANALYSIS RESULTS FOR YOUNG AND OLDER
PARTICIPANT GROUPS STANDING ON ONE LEG WITH THEIR EYES CLOSED.

WHERE s IS SECONDS AND cm IS CENTIMETRES.

Group (test
case)

Average
Time (s)

Failed
Attempts

Movement
Area (cm)

Number
Passed

Young (26) 7.6
(STD=3.01)

12 11.85
(SD=9.08)

14

Older (44) 5.58
(SD=3.21)

38 23.79
(SD=19.39)

7

TABLE V
SIT TO STAND - INITIAL ANALYSIS: MOTION ANALYSIS ON THE

ESTIMATED AND ACTUAL NUMBER OF CHAIR RISES FOR EACH
PARTICIPANT GROUP, WITH AVERAGE TIME PER RISE.

Group (test
case)

Chair Rise
(Actual)

Chair Rise (Esti-
mated)

Avg Time Per Rise (s)

Young (16) 80 78 1.44 (SD=0.27)
Older (17) 83 84 1.72 (SD=0.23)

Sit to Stand: Participants started from a seated position and
had to stand up so that the legs were fully extended, and then
sit down again. This was repeated five times with the aim to
complete five stand/seat cycles. A total of 33 test cases were
used to compile the results. The number of chair rises, as well
as the time taken to perform a rise can indicate mobility issues
with the lower limbs. Using existing peak detection algorithms
we are able to detect the chair rise for each participant with
a high degree of accuracy (as demonstrated in Table V). In
addition, subtle time differences between young and the older
people were evident.

VI. DISCUSSION AND POTENTIAL APPLICATIONS

There is evidence that the most important risk factors for
falls and mobility limitations are muscle weakness, particularly
thigh muscles [45]. However medical imaging such as MRI is
expensive and alternative non-intrusive system to automatically
detect and classify movements is of great importance in health-
care. For instance, early identification of people most at risk of
deterioration of physical function gives more time for remedial
interventions, such as lifestyle or physical rehabilitation, before
the impairments are irreversible. Such systems also give the
opportunity for long-term monitoring of patients to observe
effects of illness or ageing or monitor effectiveness of reha-
bilitation programmes. The movements that we captured were
designed by healthcare professionals and the data collection
sessions were conducted according to standardised protocols.
The movements are commonplace and necessary parts of
typical daily living, such as walking, sitting, standing and
balancing. These same movements become problematic in
disabled and in older people, leading to frailty that affects
around 9% of the population [46]. Thus, the movements that
we adapted are common clinical assessments. Due to the large
inter-individual variability in age and physical capabilities, the
dataset contains large motion variation in the skeletal pose. For
example, some participants could easily perform five chair rises

very quickly without losing balance or performance, while
others (mainly older people) experienced a deterioration of
their performance throughout the test. It is also possible to see
intra-individual variations where the same subjects performed
the same trials more than once, resulting in slight differences
in movements and timings.

The increased availability of low-cost and user-friendly im-
age sensor technology such as the Microsoft Kinect 360/One or
ASUS Xtion, enable marker-less data collection. Marker-based
systems, such as VICON, use multiple cameras to track body
segments and calculate Euler Angles that are relative to the
camera coordinate system. This is not possible with marker-
less technology, so other solutions will need to be developed. It
can be difficult to determine which machine learning approach
to utilise to detect and classify movements when considering
MoCap [1]. The methods that we applied extracted the human
skeleton from depth or video sequences to provide x, y
and z coordinates. Each of the methods showed acceptable
recognition rates, with varying model training times.

VII. CONCLUSION

There are numerous datasets that are publicly available
for the research community, however these were intended
to be used for entertainment-based algorithms. A clinically
orientated dataset to enable benchmarking does not currently
exist. The objective of the K3Da dataset is to introduce a clini-
cally supported dataset to enable benchmarking of healthcare-
based applications, methods and techniques. To the best of
our knowledge, the K3Da dataset is the first such Microsoft
Kinect One dataset. Further, the dataset contains one of the
largest diverse sample of both young and elderly available
presently. Future work will involve the expansion of the dataset
to increase the number of participants and improve the age
diversity.
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