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Abstract 

A framework is proposed to utilise the Microsoft Kinect One, a low-cost, unobtrusive and reliable sensing device 
to analyse the apprehension that exists in human motion to aid clinical decision making. We extract kinematic 
features, Centre-of-Mass and Body Movement Zone to determine the spatial-temporal directional changes for 
balancing tasks. This framework includes a pipeline that obtains the Kinect skeletal data and applies techniques 
to interpret the information to determine the steadiness or instability, hence providing an objective indicator of 
the difficulty the participant has completing the task. We conclude with a summary of our initial findings, and 
highlight areas for further research.  

Introduction 

In recent years, there has been an interest in digitalised methods for detection, analysis and quantification of 
human motion. This is due to the increased availability of low-cost multi-modality marker-less capturing devices 
[1]–[3]. The release of the latest edition in the Microsoft Kinect (henceforth Kinect) series, Kinect One, has 
enabled a new and improved immersive gaming experience. Kinect can be utilised for additional applications 
other than gaming or entertainment, most notably within the medical domain. Bigy et al. [4] proposed a 
technique for recognising posture and Freezing of Gait in those with Parkinson’s disease to aid in detecting trips 
and falls within the home. Leightley et al. [5] introduced a classification framework to detect motions commonly 
found in a rehabilitation setting to support patient wellbeing. Yang et al. [6] implemented a framework that 
extracts both depth and colour image data from the Kinect to assess the posture of participants when performing 
standing balance, the framework allowed for detection of subtle directional changes such as postural sway.  

The Kinect series has been utilised in a range of medical applications, to support this several studies have sought 
to validate the Kinect and its viability in the medical domain. Clark et al. [7] (revisited in [8]) captured a large 
number of participants performing a series of balance motions consisting of single and double limb support. 
Kinect and marker-based Vicon data were captured concurrently, with data from both systems filtered and 
synchronised. The Kinect was found to be highly robust and accurate when compared to the ‘gold-standard’ of 
the Vicon. Mentiplay et al. [9] assessed the validity of the Kinect in tracking gait and its inter-day reliability 
when compared to 3DMA marker-based camera system. The authors found that while the Kinect is not suitable 
for tracking lower body kinematic data, it is capable of measuring spatiotemporal aspects of gait. Gonzalez et al. 
[10] implemented a framework that combined the Kinect and Wii Balance board to extract Centre-of-Mass 
(CoM), the authors found a strong correlation between the two devices and were able to assess standing and 
walking motions amongst a small population sample. These works detail the validity and clinical feasibility of 
the Kinect to assess kinematic strategies related to gait and posture.  

In this work, we propose a new framework for sensing the behaviour of motion with the Kinect to identify 
difficulty people have performing balancing tasks. Progressing from previous studies [3], [11], we utilise CoM 
and Body Movement Zone (BMZ), coupled with the temporal domain to provide a low latency outcome for 
potential utilisation in real world situations. This will provide greater insight for practitioners and allow us to 



 

 

identify when a participant is unsteady, in distress or finding the motion troublesome to perform/execute. This 
would allow the practitioner to implement coping strategies or develop interventions.  

Sensing behaviour with Kinect 

Several works have been proposed to measure and analyse behaviour present in human motion. The most 
prevalent methodology suggests using one or a combination of intrusive sensors, such as body-based 
accelerometer or reflective-markers. Then, the clinically relevant indicators are extracted by analysing the 
patterns presented in time series data generated by these data mediums [12]. In recent years, the Computer 
Science community has proposed an array of solutions. These works have predominantly focused on depth 
sensor technology, which has been shown sufficiently accurate and responsive for tracking in both in-home and 
medical settings [5], [10]. 

These frameworks follow a similar structure. They first seek to identify the human motion, using motion 
classification techniques, and then undertake quantitative analysis and feature extraction techniques on the 
motion to provide greater understanding. Depth-sensors have been used for the assessment of balance by 
extracting gait-based features such as CoM from a skeletal stream to provide mobility indicators (e.g. [6], [8], 
[13]–[16]). For example, Dolatabadi et al. [14] proposed a home-based system for assessing changes in gait and 
balance using kinematic features such as CoM. The authors utilise a Microsoft Kinect sensor to observe gait 
recovery in a participant that had undergone surgery. They were able to track the gait changes over a number of 
weeks, helping to inform clinical judgements based on the information extracted. Typical gait patterns require 
stability standing on one-leg which is a task that becomes increasingly difficult for people with movement 
impairments, yet very little research has focussed on sensing stability. 

The aim of the present study was to develop automated methods to sense the instability in human motion using 
depth sensor technology, CoM and body-movement-zone including a wide range of participant characteristics. 
Our work relies on several key computer vision and pattern recognition techniques such as stereovision, pose 
estimation, and feature extraction/representation.  

Identifying Behaviour and Kinect: Framework 

An overarching framework for analysing human motion obtained from the Kinect to identify unease in motion is 
proposed (see Figure 1). This section will introduce the framework methodology, utilisation and implementation 
for possible real world deployment. The analysis framework has been implemented in Matlab 2014a and all 
source code is openly available at (Link upon acceptance).   

 

Figure 1 - Overarching framework for analysing human motion collected from the Microsoft Kinect to identify movement 
hesitation. 

 

 

 



 

 

 

Table 1: Participant demographics used in this study, extracted from the K3Da Dataset [17]. 

Variables  Young (≤59yrs, n=5) Old (≥60yrs, n=5) Athletic Old 
(≥60yrs, n=5) 

Age 25.6 (7.03) 73.4 (3.36) 64.8 (6.34) 
Height 178.6 (8.26) 172.8 (4.54) 172.8 (4.54) 
Weight 75.2 (12.07) 79.4 (21.04) 62 (10.93) 

Sex (male %) 70% 40% 60% 
BMI 20.7 (3.63) 26.46 (7.12) 21.9 (1.56) 

 

In this work, the newly released K3Da Dataset [17] was employed. The dataset consists of more than 50 
participants performing a range of clinically relevant movements captured by a Kinect One. The dataset is 
composed of three participant groups, young (≤59yrs), old (≥60yrs) and athletic old (≥60yrs). In this work, 
fifteen participants were randomly selected (see Table 1 for demographic information), five from each group 
with the following motions extracted: One-Leg Balance (Eyes Open) and One-Leg Balance (Eyes Closed), 
providing a total of 52 motions. Each trial was independently assessed by two coders (using skeletal and video 
streams) and categorised as follows: “Stable and successful”, “unstable and successful” and “unstable and 
unsuccessful”, providing ground truth information to validate the proposed framework.  The following 
definitions were used when determining category: 

• Stable and successful: The participant had very little body movement and was able to complete the 
balancing task. 

• Unstable and successful: The participant had high amounts of extraneous body movement, but was able 
to complete the balancing task. 

• Unstable and unsuccessful: The participant had high amounts of extraneous body movement and was 
unable to complete the balancing task.   

 
The first coding iteration resulted in an inter-reliability of 0.84. In the second iteration, the coders consulted one-
another to reach final agreement on the rating of trials. The final categorisation composition can be found in 
Table 2.  

Table 2: Categorisation labelling for each participant group.  

Categorisation Young Old Athletic Old 
Stable and successful 9 4 6 

Unstable and successful 5 2 3 
Unstable and unsuccessful 1 13 9 

 

To identify the level of stability, each motion sequence was analysed independently, hence only the motion 
itself is evaluated and not dependent on any other motion that the participant (or others) had performed. While 
the Kinect provides a skeletal stream, similar to motion capture from a marker-based system (such as Vicon), it 
does so without the need for placing markers on the participants body. The Kinect utilises depth sensor 
technology to identify key anatomical landmarks on the body that are tracked over time (up to 30Hz). In this 
work, we decompose the Kinect skeletal stream into two time-series parameters, CoM and BMZ to describe the 
participants’ behaviour at each time period (frame). This enables an overall determination of the behaviour and 
performance of the participant.  

Using three joint locations provided by the Kinect (centre of the hip, left shoulder and right shoulder), while on 
their own they can provide descriptive information about the motion we seek to derive a single variable that is 
powerful enough to describe the motion. The CoM [10], [13] is encoded for each frame as the average point 
between the aforementioned joints. The change in position between consecutive frames is the directional change 



 

 

over time. Therefore, for each period of time we are able to identify the position, and the temporal directional 
movement of the CoM.  

In this work, we introduce the BMZ, a parameter that describes the total volume of space occupied by the 
participant when in motion (see Figure 2 for a visual example). This is computed by identifying the total space 
covered (or occupied) by the participant’s skeleton when undertaking a motion per frame using standard volume 
calculations. For example, if the participant is stable, with little movement, the BMZ variable is small, whereas 
with large variations in motion such as raising of the arm the size of the overtime BMZ increases.  

To determine the behaviour exhibited by the participant, the CoM and BMZ are firstly assessed individually, and 
then assessed together to determine an outcome. For each parameter, the intra-framed variation is computed (e.g. 
difference between frame 1 and frame 2), using this we are able to generate the percentage difference between 
the current and last frame. Hence, we can represent the CoM and BMZ parameters with a percentage change 
value over time (e.g. if we have 300 frames, for each parameter we will have 300 percentage values).  Therefore, 
we are able to identify sudden and large motion variations that are typically present when the participant has 
encountered difficultly when undertaking a motion. Each frame (represented by the percentage value for both 
CoM and BMZ) is categorised as follows, based on our experience working in the field and other similar works, 
if the percentage is: 

1. Less than 30% it is labelled as Stable and successful. 

2. Between 31% and 70% labelled as Unstable and successful. 

3. Greater than 71% labelled as Unstable and unsuccessful.  

Having represented each parameter by a set of labels representing the state of the motion at a specific time 
period, these are aggregated; the category with the most “votes” is identified as the classification for the motion.  

 

Figure 2 - Example of a skeleton within a Body Movement Zone. Defined as the space occupied by the participant for each 
frame. Observe the entire sequence (represent by blue) and the surrounding box (represented by black), which is the total 
space occupied by the participant.  

Identifying Behaviour 

The ground truth labels derived in this work are used to evaluate the proposed framework for the task of 
detecting unease in motion performance across a range of participants. For evaluation, random samples of 
participants were identified, representing a large range of demographics profiles.  The results were repeated five 



 

 

times to ensure reproducibility in the coding – no anomalies were identified. Each motion was assessed 
individually and compared to the ground truth labelling to determine the success of the framework.  

Table 3: Classification accuracy for each participant group based on categorisation.   

 Young (accuracy) Old (accuracy) Athletic Old 
(accuracy) 

Stable and successful 9 (0.96) 4 (0.89) 6 (0.93) 
Unstable and successful 5 (0.97) 2 (0.91) 3 (0.94) 

Unstable and unsuccessful 1 (0.90) 13 (0.93) 9 (0.92) 
Average: 0.94 0.91 0.93 

 

The framework provided a high degree of accuracy when identifying mobility of participants who had been 
identified as finding the motion difficult during ground truth labelling (see Table 3). Overall, the framework 
performed robustly with a classification accuracy of 0.92, which is considerably high for the type of data being 
classified. Confusion observed across the participant range low, with a high rate of true positives, and a small 
rate of false positives and a robust overall sensitivity of 0.94, specificity of 0.97 and Matthew Correlation 
Coefficient score of 0.97. There was no significant difference between One Leg Balance (Eyes Open) and One 
Leg Balance (Eyes Closed), with an overall accuracy of 0.95 and 0.95 respectively.  

Discussion and conclusion 

There is little doubt to the benefits of utilising the Kinect sensor for use in monitoring, quantify and evaluating 
human motion. This work has relied upon the K3Da dataset, which has provided a large number of clinically 
relevant motions and a dives range of participants, however it is not without its challenges. First, range of the 
sensor is limited – only capering motions within a 4 metre by 4 metre areas. Second, Joint occlusion and sensor 
accuracy varied for each participant, and the types of motion being undertaken. However, when the motions 
were coded the coders had access to the video stream and not the skeleton alone – allowing for greater 
interpretation. Conversely, the framework only utilised skeletal information yet was able to identify motion 
stability with a high degree of accuracy.   

In this work, we have sought to propose a framework for identifying instability in motion, allowing for a 
practitioner to intervene and identify what may lie behind the instability. Only a single outcome is provided 
which is able to provide an overview of what is being observed. However, it would be more helpful to identify 
specific temporal dynamics to improve the clinical decision making process. Further, we have utilised two 
motion groups, One-Leg Balance (Eyes Open) and One-Leg Balance (Eyes Closed). Future work will explore 
the possibility of adapting the framework to provide detailed joint-level temporal kinematic insight; hence 
practitioners can focus their efforts in improving confidence in these areas.  
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