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Abstract—Patients requiring physical rehabilitation, such as
those suffering long-term chronic disease or recovering from
illness or injury are reliant upon rehabilitation programmes to
recover. Tele-rehabilitation has been proposed as a promising
development to remove physical barriers of locality and place
rehabilitation services within the patients home. We propose
an interdisciplinary research approach to generate an assistive
rehabilitative platform through the development of computer
vision techniques, particularly near-real-time motion and gesture
analysis. In this paper, we present our initial findings on the
comparison of two popular machine learning algorithms, Sup-
port Vector Machines and Random Forests for their ability to
accurately predict periodic kinematic actions.

I. INTRODUCTION

Robust classification and interpretation of human activity in
relation to recognition of actions is an active research area. The
application of human recognition has received wide attention
in recent years, in fields such as surveillance, healthcare, and
the gaming industry. The release of the Microsoft Kinect
(Kinect), which is a peripheral accessory intended for use with
Xbox 360 gaming console enables natural human-machine
interaction. The Kinect is able to track a users gestures and
body movements to control the commands of a game instead
of touching or moving a keyboard, control pad or mouse [1].

Kinect incorporates an infra-red and a RGB camera to create
a three-dimensional (3D) map of the area in front of the device,
and uses a randomised decision forest algorithm to automat-
ically detect and determine anatomical joints on the body of
the user (kinematic output) [1]. Going beyond the Kinects
application in gaming, there are other promising capabilities of
the depth sensor, RGB images and body tracking algorithms
that could be exploited further in rehabilitation, particularly
home-based rehabilitation [2], [3].

In this short paper, we present our initial experimental find-
ings of the comparison of two training-based machine learning
algorithms (MLAs), namely, Support Vector Machines (SVM)
[4] and Random Forests (RF) [5] on how accurately they
classify periodic actions sequences based on Kinect output.

II. METHODS

Kinematic data used in this work was acquired by use of
the Kinect and Kinect for Windows Software Development
Kit. The application acquired the 3D positions of x, y, z axis
position of 20 predefined feature joints at a rate of up to 30
frames-per-second [1].

A. Dataset

A set of 10 participants performing 10 periodic actions was
recorded. The participants were asked to perform the actions
periodically within the defined motion area for a 10 second
period. Participants were asked to ensure that they had a
neutral standing pose to which they would maintain at the start
and the end of the action. In order to assess the classification
accuracy, model training and classification times, the dataset
was randomly split into two subsets, where five participants
formed the training set and five formed the testing set. To
conduct the training of the classifiers, one participant from
the training set was randomly selected for training, with each
classification trial introducing a new training participant until
all five training participant were utilised. The testing set was
tested against the classifiers at each trial.

B. Classifiers

Based on statistical learning theory, SVM is a supervised
learning MLA first introduced in 1995 [4]. An SVM pro-
duces a model that represents the training data by learning
the optimum separating hyperplane between classes; these
hyperplanes are defined as the support vectors and represent
each class.

RF is a MLA consisting of multiple decision trees con-
structed by supervised learning of a training set, introduced in
2001 [5]. An RF model is constructed by using the bootstrap
method to generate ntree of decision trees which are each
provided with randomly selected samples of the training input
and then all decision trees are combined into a decision forest.
For each bootstrap, an unpruned classification tree with a
random sample mtry (e.g 3) of the training data, represents
the number of samples used for each tree.

III. RESULTS AND DISCUSSION

The training time for each classifier varied depending on
the number of training participants and parameters selected
(Table II). SVM overall, and for each training trial, was the
quickest to train, while RF took considerably longer to train
for each trial and overall, as demonstrated in Table II. With the
incremental increase of training participants, the training of the
classifiers becomes more complex, consequently the training
time of the classifiers increases.

Overall average classification times were significantly re-
duced to millisecond predictions, compared with training



TABLE I
AVERAGE OVERALL CLASSIFICATION ACCURACY PER TRIAL

Trial: 1 2 3 4 5
Overall Accuracy [%]: SVM RF SVM RF SVM RF SVM RF SVM RF

Jumping 19.66 39.97 11.66 15.31 57.7 37.53 73.23 76.65 83.34 77.25
Arms Movement 53.29 54.75 46.31 68.97 61.73 67.37 71.89 67.68 81.76 83.68

Pickup Object 45.75 53.75 41.02 51.09 62.25 67.82 79.37 75.81 89.68 87.81
Squats 27.65 47.27 19.82 30.64 54.22 44.17 72.98 64 80.51 84.18

Walking 9.09 15.3 27.16 64.68 61.22 80.67 77.29 73.89 81.6 90.31
Jogging 20.88 51.15 39.79 33.93 65.34 75.78 61.85 69.33 83.33 86.91

Bending to Toes 34.56 8.25 65.08 69.79 69.92 61.8 81.19 71.79 80.73 86.99
Standing to Seated 40.79 49.49 38.39 52.15 60.2 57.27 73.11 65.01 89.19 80.47
Upper Body Twist 76.3 74.65 82.04 77.31 87.7 85.37 84.91 85.04 86.77 86.64

Arm Stretch 58.91 64.06 57.94 63.93 62.42 60.08 64.44 78.61 79.78 82.68
Average [%]: 38.69 45.86 42.92 52.78 64.22 63.79 74.03 75.02 83.67 84.69

TABLE II
COMPUTATIONAL TRAINING TIME FOR EACH CLASSIFIER

Trial 1 2 3 4 5
Classifier Training time [Sec]

SVM 0.71 1.92 4.16 7.84 11.44
RF 1.56 5.78 7.33 10.63 15.26

times, with on average RF performing faster than SVM for
each trial, as demonstrated in Table III. SVM, as with training
the models, predicting classification is computationally more
expensive than RF. The average classification time of each
activity also increased at each trial with the introduction of
additional training set, albeit on a lower scale (100 up to 400
milliseconds) as demonstrated in Table III.

TABLE III
AVERAGE CLASSIFICATION TIMES PER CLASSIFIER AND TRIAL

Trial 1 2 3 4 5
Classifier Testing time [Sec]

SVM 0.013 0.021 0.037 0.045 0.052
RF 0.007 0.014 0.014 0.012 0.016

Classification accuracy differed between SVM and RF.
Furthermore, the number of participants in the training set
greatly affected classification accuracy. As demonstrated in
Table I, RF exhibited the highest average overall with 84.69%,
however, only marginally outperforming SVM which obtained
83.67%. The largest overall margin produced between the
two classifiers was using two training participants, where a
margin of 9.86%, with RF at 52.78% and SVM with 42.92%.
With both SVM and RF, increasing the number of training
participants improved classification accuracies considerably
with SVM and RF having similar overall mean accuracies from
trial 3 to 5.

SVM and RF were compared on their ability to predict
action sequences. The results presented in this paper illustrate
that RF offers classification performance advantages compared
to SVM in the classification of actions based on Kinect
kinematic data and potential use in rehabilitation. The results
show that both SVM and RF were suited towards classification
of kinematics, with RF capable of predicting accuracies in
a significantly shorter time than SVM (between 100 − 400

milliseconds). In contrast, RF was computationally more ex-
pensive when training compared with SVM.

Classification between the broad range of actions was
reliable when all five training participants, with even subtle
changes between Walking and Jogging classified accurately.
However, confusion remained in trial 1 for the aforementioned
actions, with misclassification between the two actions having
a negative affect on accuracy (Table I c1.). These actions
were repeatedly misclassified until trial 3 where the accu-
racy stabilised. The Standing to Seated action presented a
challenge, due to occlusion of the chair and other limbs, yet
both classifiers were capable of achieving acceptable accuracy
results. In our study, we found that by increasing the number
of participants enabled a better tolerance on the variation in
anatomical joints amongst the different participants, leading
to improved classification results. A larger training set could
improve the results further and remove misclassification of
actions due to anatomical differences.

IV. CONCLUSION

Our initial results showed that both SVM and RF could re-
liably classify human actions and gestures. RF was marginally
more accurate, but more expensive in terms of training time,
however SVM was more expensive in terms of prediction
times. Our study has presented a number of possibilities for
using SVM or RF with Kinect kinematics in a rehabilitation
setting, such as near-real-time classification of actions and
multiple gestures for analysis.
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