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Abstract—The recognition of human activity is a challenging
topic for machine learning. We present an analysis of Support
Vector Machines (SVM) and Random Forests (RF) in their ability
to accurately classify Kinect kinematic activities. Twenty par-
ticipants were captured using the Microsoft Kinect performing
ten physical rehabilitation activities. We extracted the kinematic
location, velocity and energy of the skeletal joints at each frame
of the activity to form a feature vector. Principle Component
Analysis (PCA) was applied as a pre-processing step to reduce
dimensionality and identify significant features amongst activity
classes. SVM and RF are then trained on the PCA feature space
to assess classification performance; we undertook an incremental
increase in the dataset size. We analyse the classification accuracy,
model training and classification time quantitatively at each
incremental increase. The experimental results demonstrate that
RF outperformed SVM in classification rate for six out of the ten
activities. Although SVM has performance advantages in training
time, RF would be more suited to real-time activity classification
due to its low classification time and high classification accuracy
when using eight to ten participants in the training set.

Index Terms—Kinect, Machine Learning, Random Forests,
Support Vector Machines.

I. INTRODUCTION

Robust interpretation and classification of human activity is

an active research area which has received wide attention in

recent years, with applications in surveillance, healthcare, and

gaming [1]. There has been a long-standing interest in vision-

based human motion and activity recognition for human-

computer interaction (HCI). The Microsoft Kinect (Kinect) is a

low-cost peripheral accessory intended for use with the Xbox

360 gaming console. The Kinect allows for real-time body

detection and tracking of human activities and gestures. By

incorporating infra-red and RGB camera technology, the un-

derlying body detection algorithms create a three-dimensional

(3D) depth map of the area in front of the device, randomised

decision forest algorithms are then used to automatically detect

and determine anatomical joints on the body of the user and

stream the 3D coordinate location for each joint [2].

The innovation of the Kinect enables real-time HCI through

recognition of user’s gestures and body movements to, for

example, control a character or gameplay elements. However,

despite advances in vision-based HCI, the main constraint is

machine understanding of the gesture, action and behavioural

context, which still remains an open and ambitious problem to

solve. Motivated by current limitations, we are focused on the

promising application of the Kinect for assessment of physical

rehabilitation activities for full-body tracking and gestured-

based detection by an intelligent HCI system [3], [4].

In this study, we use kinematic data obtained from the

Kinect, in particular vertical location, velocity and energy of

skeletal joints at each frame to provide a detailed analysis of

two popular machine learning algorithms (MLA). SVM [5]

and RF [6] are assessed with how accurately they classify

unseen test data. To our knowledge, no other paper has sought

to compare MLA’s in the context of Kinect kinematics. We

seek to provide analysis on the average classification accuracy,

model training and classification time to determine which is

suitable for classification of Kinect kinematic data.

The remainder of this paper is organised in the following

way: Section II, review of related work on activity recognition

with Kinect. Section III, outline of the methods, dataset and

discussion of MLA’s. Section IV, presents experimental results

on the recognition of human activity. Finally, we discuss and

conclude our results in Section V and VI.

II. RELATED WORK

Human pose, action and activity recognition has been ex-

tensively studied in the literature; we refer the reader to recent

surveys for a detailed summary, [1], [7], [8]. The availability

of low-cost depth cameras such as the Kinect and advances

in motion tracking technology have created a high demand

on adapting current and developing new techniques for real-

time HCI vision-based activity recognition. In the field of

activity tracking and recognition there are a limited number of

studies that sought to exploit Kinect skeletal output for body

tracking, posture analysis and action recognition. Clark et al.

[9] undertook a review of the Kinect body tracking algorithms

for posture control. The study compared Kinect with a VICON

marker-based tracking system for joint accuracy. The authors

concluded the potential use of the Kinect in posture analysis

due to its high degree of joint accuracy.

Bhattacharya et al. [10] analysed SVM and Decisions Trees

(DT) for how they perform in detecting and classify gestures

used in aircraft marshalling. The study found that SVM

outperformed DT, though the authors noted that DT were

susceptible to participant anatomical differences whereas SVM
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was participant independent and not affected by differences

in body posture. Additionally, Zhang et al. [11] presented

a method for utilising kinematic output to recognise and

segment the time-sequential postures of a golf swing. By

transforming kinematic output to a symbol sequence through

vector quantisation enabled a SVM GMM-KL kernel to score

and classify golf swings accurately.

Lately, Patsadu et al. [12] performed a comparison of several

popular MLA’s to assess the performance in predicting human

falling motions. The authors found that backpropagation neural

network exceeded all other classifiers, with SVM second in

predicting three activities, namely, sitting down, lying down

and standing on a small training and testing dataset. However,

closer inspection of this prior work reveals several important

biases that may have affected the conclusions. Firstly, the

study compared performance of the MLA’s on a limited set

of activities, which are distinctively different to one another.

Secondly, the limited size of the dataset fails to factor in

anatomical differences when scaled. Finally, the Kinect is not

designed to capture lying down poses, leading to unpredictable

inference of joints depending on the subject and activity [2].

SVM and RF are popular classifiers used in a number

of domains, however in the field of 3D activity recognition,

RF has had limited use ([1], [7], [13]). In other domains

several studies have sought to investigate the performance

differences in classification by SVM and RF. Nitze et al. [14]

sought to provide a comparison for crop type classification

(for agriculture) by use of image representations of different

crop fields. Where as, Statnikov et al. [15] sought to compare

for microarray-based cancer diagnosis and prediction based

on gene profiling. Finally, Tang et al. [16] assessed for spam

detection based on IP addresses. SVM was deemed by two

of the studies ([14], [15]) to be the most accurate with its

predictions, with one study finding RF more applicable [16].

A theme apparent in many comparisons is that SVM was more

accurate due to it being less sensitive to the choice of input

parameters than RF.

In the context of our own research, we build upon the

shortcomings of Patsadu et al. [12] and the limited use of RF

to determine which classifier, SVM or RF, performs reliably

in classifying physical rehabilitation activities based on Kinect

3D kinematics. We believe that by introducing a larger dataset

and increasing the number activities performed we can reliably

attain which classifier is the most suited for our domain.

III. METHODS

In this section, we present our method in the following

sub-sections: introduction to SVM and RF, dataset, PCA and

kinematic reduction technique and model training.

A. Support Vector Machines

Based on statistical learning theory, SVM is a supervised

learning classifier [5]. An SVM produces a model that rep-

resents the training data by learning the optimum separating

hyperplane between classes; these hyperplanes are defined as

the support vectors and symbolise each class.

A kernel is utilised by an SVM to minimise both the

empirical risk and the model complexity. In this study, we

use the radial basis function (RBF) kernel, which non-linearly

maps samples into a higher dimensional space, the RBF can

control the relationship between class labels and attributes

when they are non-linear [17]. RBF can be defined as

K(xi, yi) = exp(−γ||xi − yi||2), γ > 0 (1)

where x and y are the training and label respectively, γ is the

kernel parameter. Parameter C is a user-defined parameter that

controls the trade-off between model complexity and empirical

error in SVM. In addition, the parameter γ determines the

shape of the separating hyperplane in the RBF kernel.

When the trained SVM model is provided with data for

classification, it is able to determine the best fit in relation

to the support vectors leading to predicted categorisation of

the data. The software used to implement SVM is libSVM

Toolbox for Matlab [18] with the RBF kernel.

B. Random Forests

RF is a classifier consisting of multiple decision trees

constructed by supervised learning of a training set [6]. An

RF model is constructed by using the bootstrap method to

randomly generate ntree of decision trees which are each

provided with randomly selected samples of the training input

and then all decision trees are combined into a decision forest.

For each bootstrap, a random mtry (default 3) sample of the

training data is used which determines the size of an unpruned

classification tree.

When an RF model is provided with data for classification,

the model predicts a corresponding class based on the voting

of all trees, where the class with the greatest number of votes

is selected [6]. RF only requires one parameter, ntree, which

sets the number of decision trees to grow. The software used

to implement RF was randomForest Toolbox for Matlab [19].

C. Activities and Data Collection

The dataset used in this study was acquired by Kinect and

Kinect for Windows Software Development Kit [20]. The

application obtained the 3D coordinates of 20 body joints,

namely: feet, ankles, knees, hips, torso, shoulders, elbows,

wrists, hands and head at a rate of 30 fps, where: x extends

from the left to right, y indicates vertical position and z
extends in the direction in which the Kinect is facing.

The Kinect (tilt 0 degrees) was placed on a tripod at a height

of 0.7 meters (m) with the participant standing 2m from the

device in a defined movement area of 0.5m ×0.5m. Partici-

pants were asked to perform activities periodically within the

defined movement area for a 10 second period directly facing

the Kinect. These activities were chosen to reflect activities

of daily living as well as movements a person would perform

when undertaking a physical rehabilitation program. Activities

were performed periodically to characterise temporal varia-

tions. Participants were asked to assume a neutral standing

pose at the start and end of the activity, in which they stood
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still with legs fully extended and arms extended and relaxed

by the side of the body. The aim was to ensure consistency

between the training and testing datasets and, to limit the

anatomical variance between the participants. A group of

twenty participants (12 men, 8 women) performed a set of

ten activities, resulting in the capture of 200 activities with a

total of 60,225 frames.
The activities performed were as follows; Jumping: arms

by the side and feet together jumping approximately 10cm off

the ground; Arm Movement: arms extended along the frontal

plane moving to a side-by-side position; Pickup Object: from

a standing position bending down to pick up an object off the

floor with the right hand; Squats: arms by the side, bending

down so that gluteals approximately 10cm off the ground;

Walking: walking on the spot, with feet raised approximately

5cm. Jogging: jogging on the spot, with feet raised approxi-

mately 8cm; Bending to Toes: from a neutral standing position,

bending over and keeping the legs and upper spine as straight

as possible, the arms were extended until the toes have been

touched; Standing to Seated: neutral standing position, bend

knees and sit on a stool located behind; Upper Body Twist:

both arms raised vertically in front of the torso and twist from

left to right; Arm Stretch: with both feet flat on the floor raise

both arms vertically as high as possible.

D. Kinematic Reduction and Pre-Processing
The dataset was visually checked to ensure correct recording

of the 3D position data for each activity; a row vector

of 20 body-joint coordinates represents each frame. Each

activity captured is aligned to the “hip-centre” joint to cre-

ate a coordinate system relative to the “hip-centre” of the

first frame. Where the original coordinate Pn,i(x, y, z) of

the nth joint at the ith frame is subtracted by “hip-centre”,

Phipcentre,1(x, y, z) of the first frame, as defined by

A = {P*n,i(x, y, z)|n = 1, . . . , 20, i = 1, . . . , I}
P*n,i(x, y, z) = Pn,i(x, y, z)− Phipcentre,1(x, y, z) (2)

where A is (60×I) matrix of the “hip-centre” aligned activity

with total frames I , P* is the aligned joint position.
Location, velocity and energy are representative kinematic

features. They are used to represent the dynamic variation of

each activity in our study. The vertical location and kinematic

properties are discriminative compared to horizontal left to

right and forward to backwards directions. To reduce the

dimensionality of the activity feature vector, y-position (y), y-

velocity (vy) and energy (e) are extracted to form the activity

feature vector Fn,i of the nth joint at the ith frame. We

compute the velocity and energy for each joint position as

follows

Fn,i = {(yn,i, vy(n,i), en,i)|vy(n,i) = yn,i − yn,i−5,

en,i = (v2x(n,i) + v2y(n,i) + v2z(n,i))} (3)

where yn,i is the aligned y in P*n,i , as shown in Eq.2,

energy is determined as a sum of energy in x, y, z of each

joint. The velocity vy and energy (e) are calculated over the

period of 5 frames (i−5) to provide increased tolerance for the

measurement error presented by the Kinect.

Principle Component Analysis (PCA) was applied to the

aligned dataset at each λ participant to reduce dimensionality

of the aligned activity feature vector F by projecting the

data into a lower-dimensional space. Transposing to low-

dimensional feature space provides a number of benefits, such

as reduced computational complexity, stabilisation of data

noise and improved accuracy. In this study, the variance has

been set as 98%, meaning we keep the dimensions (eigen-

vectors) that contain 98% of the variance for the projected

datasets. The projected dataset is defined in the following way

T = {(Fn,i, la)|n = 1, . . . , N, i = 1, . . . , I, la = 1, . . . , L}
(4)

where Fn,i is the projected activity feature vector defined in

Eq. 3 for the nth joint at the ith frame and la is the class label

for each activity (e.g. Jumping class: 1, Walking class: 2).

E. Training

In order to assess classification accuracy, model training and

classification time, the dataset was randomly split into two sub-

sets, ten participants formed the training set and the remaining

formed the testing set. With each experiment introducing

another participant (denoted by λ) from the training set until

all the participants were used. By training the classifiers in this

way, the study was able to determine the suitable number of

participants for training to achieve a stable classification rate.

TABLE I
OPTIMUM PARAMETERS FOR MODEL TRAINING FROM λ

λ participants/ 2 4 6 8 10
Parameter SVM

C 28 28 32 28 30
γ 8 8 8 6 6

RF
ntree 400 700 800 800 800

To ensure optimal performance of each classifiers, parame-

ter optimisation was performed as demonstrated in Table I.

For C and γ in SVM, the selection was undertaken accord-

ing to the cross-validation method [17]. To perform cross-

validation, the training set was segregated into two subsets

of equal size. Then the classifier was trained on one subset

(training data) and accuracy is tested with the introduction of

the second subset. The optimisation process was repeated for

each of the possible parameter in exponential steps for both

C and γ between 10−4 to 105 and 10−6 to 103 respectively.

In RF, ntree represents the number of trees to be generated

requires optimisation. To perform optimisation, the range

of trees has been tested with incremental increases of 100

between 100 up to 1000 trees. The optimised number of

trees required for each experiment are shown in Table I. The

experiment results suggest a consistent number of 800 ntree

was sufficient for training.
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IV. EXPERIMENTAL RESULTS FOR RECOGNITION

In this section, we present our experimental results. The

proposed method has been implemented in Matlab 2012a on

a workstation with an IntelCore i7 processor and 8GB RAM.

A. Classification Accuracy

Our first experiment illustrated the benefits of using the

reduced feature space of PCA to train the classifiers. We

compare the classification accuracy versus not applying PCA,

our experimental results are demonstrated in Fig. 1. The

standard procedure for calculating classification accuracy is

by assessing the number of correctly classified frames versus

the total number of frames in the activity. Furthermore, clas-

sification accuracy was calculated as the average over all ten

activities from each of the testing participants. We observe

that by using 6 to 10 participants in the training dataset, use

of PCA improved classification accuracy considerably, where

1 to 5 participants were used each classifier achieved similar

low classification rate. All results presented hereafter are with

PCA applied.
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Fig. 1. Average activity classification rate for SVM and RF trained from an
increasing number of λ)

We demonstrate in Fig. 2 the standard deviation (SD) at

each incremental λ) increase. The standard procedure for

calculating SD was the deviation of the average classification

accuracy for each participant’s activities. Observing Fig. 2,

the deviation of error reduced, represented by an error bar,

considerably for both SVM and RF, between participants 1 to

10 from, 24.03, 22.7 to 8.98, 7.07 respectively.

Initial findings demonstrate that classification accuracy im-

proved and error reduced when the number of participants

in the training set was incrementally increased, levelling off

between 8 to 10 participants (Fig. 1 & Fig. 2). Table IV

summarises classification accuracy for each activity from

our proposed method. As demonstrated, there is a variation

between SVM and RF with the number of training participants

affecting average classification accuracy. RF exhibited the

highest average overall accuracy with 85.17%, outperforming

SVM, which obtained 83.05%. With SVM and RF, increasing

the number of training participants improved classification ac-

curacy considerably, with both having a similar linear increase

in accuracy for 6 to 10 participants.
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Fig. 2. Activity classification and its standard deviation for classifiers trained
from λ

The classification accuracy of several activities fluctuated

due to the number of training participants used and the

classifier. We observed in Table IV, using two, four and six

training participants resulted in low accuracy across the range

of activities, the use of eight and ten training participants saw

a significant improvement and levelling in accuracy across the

range of activities.

The most notable class confusion was observed amongst

Walking, Jogging, Upper Body Twist and Arm Movement with

misclassification present in Pickup Object.

Due to anatomical similarities between Upper Body Twist

and Arm Movement, class confusion was observed, both SVM

and RF over classifying Upper Body Twist. As observed in

Table IV, classification accuracy between the aforementioned

activities, there is a difference for two, four and six training

participants. SVM and RF use a probability technique to

determine the class of each frame, Fig. 3 demonstrates the

class probability for Arm Movement. We observe (Fig. 3) that

RF and SVM both experience confusion at different points in

the activity sequence for Arm Movement, this inconsistency

is observed throughout the study. However, for eight and ten

training participants the classifiers stabilised and provided cor-

rect classification, with SVM producing the highest accuracy

from all results for Arm Movement with 92.25%.

Further confusion between Walking and Jogging was en-

countered due to the similarity in limb rotation and movement.

As observed in Table IV, classification accuracy for the

aforementioned activities with SVM and RF had a notable

difference in classification rate and confusion. For each λ
increase SVM struggled to classify Walking correctly, with an

over confidence in Jogging observed. In addition, RF observed

a similar over confidence in Jogging, however for both SVM

and RF when ten training participants were used, we observed

a harmonising of both Walking and Jogging.

Finally, the Pickup Object activity suffered consistent mis-
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classification throughout our experiments. Due to the similarity

and overlap of posture with a number of other activities,

we observed misclassification for two, four and six training

participants. Furthermore, even for eight and ten training par-

ticipants classification accuracy for SVM and RF was below

the average classification accuracy, with misclassification not

being reduced with increase in the training set.
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Fig. 3. An example class estimate for SVM and RF by a participant
performing Arm Movement. Expected class is 2

To conclude, RF provided the highest average classification

accuracy for each λ increase in dataset size when compared

with SVM. Conversely, SVM provided improved classification

results for a few activities, namely, Arm Movements, Pickup

Object, Standing to Seated and Upper Body Twist, with Arm

Movements seeing a 7.02% improvement on the result when

compared to RF.

B. Model Training and Classification Time

TABLE II
MODEL TRAINING TIME FOR MODELS TRAINED FROM λ

λ participants/ 2 4 6 8 10
Classifier Training time [Sec]

SVM 2.381 14.69 30.39 42.24 55.96
RF 5.08 19.35 49.06 79.21 123.17

SVM overall, λ increase was the quickest to train, while

RF took considerably longer to train, as demonstrated in

Table II. The training time for each classifier was affected by

the number of training participants and parameters selected

(Table I). Parameter optimisation time was not factored into

model training time. With the increase of training participants,

we observed the training of the classifiers becomes more

complex; consequently the training time of the classifiers tends

to increase exponentially.

Average classification time was significantly reduced to

millisecond predictions, compared with training time, with

on average RF performing faster than SVM as demonstrated

in Table III. SVM, as with training, predicting classification

was computationally more expensive than RF, however the

TABLE III
CLASSIFICATION TIME FOR MODELS TRAINED FROM λ

λ participants/ 2 4 6 8 10
Classifier Classification time [Sec]

SVM 0.036 0.07 0.114 0.146 0.179
RF 0.007 0.022 0.031 0.034 0.037

duration for classification is directly linked to the ntree, C, γ.

The average classification time of each activity also increased

with the introduction of new participants, albeit on a lower

scale (100 up to 300 milliseconds) as demonstrated in Table

III. Classification times were calculated by the average of the

ten testing participants and on all activities.

V. DISCUSSION

In this study, we analysed SVM and RF on their ability to

predict and correctly classify physical rehabilitation activities.

The study found that by using 8 to 10 participants in the

training set stable classification accuracy for both SVM and

RF was achieved. In addition, results presented in this paper

illustrate that RF offers performance advantages compared

to SVM in the classification of activities based on our 3D

kinematic dataset. As in [10], we also note that there has to

be an understanding of the anatomical differences between

training and testing participants which could influence the

result if no prior normalisation is undertaken.

We have found that normalising with the “hip-centre” joint

of the first frame, before computing yn,i, vy(n,i), en,i and

applying PCA reduces anatomical differences and aids in im-

proved classification accuracy (Fig. 1 & Table III). In addition,

the computed yn,i, vy(n,i), en,i is high-dimensional, containing

twenty body joints and while SVM and RF are capable of

handling high-dimensional data, feature space reduction by

PCA has aided in providing higher accuracy results, improved

model training and classification times.

The results reveal that both SVM and RF are suited towards

classification of kinematics, although RF was capable of classi-

fication significantly faster than SVM. RF was computationally

more expensive when training, with a considerable difference

versus SVM. RF struggled to detect continuous movement

such as Arm Movement resulting in a high misclassification

rate (Fig. 3), if misclassification of continuous movement can

be overcome it could potentially increase accuracy.

The average SD for achieved accuracies reduced as further

training participants were introduced (Fig. 2), suggesting har-

monisation between the training and testing datasets. Finally,

we have found that parameter selection, both in terms of C,

γ for SVM and ntree for RF has an impact on training and

classification time due to the introduction of computational

complexity (Table I, Table II). For SVM, C affected the num-

ber of support vectors, leading to an increase in classification

time, whereas RF, ntree increased model training times when

a high number of decision trees needed generating.

The Kinect has sensitivity of joint rotation, with the Kinect

designed to detect activities of a participant who is standing

face forward to the Kinect, large rotation could prove difficult
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TABLE IV
AVERAGE CLASSIFICATION ACCURACY PER ACTIVITY FOR λ FOR RF AND SVM

λ / 2 4 6 8 10
Overall Accuracy [%] SVM RF SVM RF SVM RF SVM RF SVM RF

Jumping 19.23 36.19 41.97 55.22 60.14 69.49 76.56 85.24 85.07 86.45
Arms Movement 41.03 48.64 66.42 68.64 62.67 73.93 80.5 85.76 92.25 85.23

Pickup Object 36.64 55.79 39.61 58.47 58.25 57.93 74.85 79.71 78.47 76.24
Squats 29.45 26.88 34.36 46.08 57.92 55.09 78.86 85.92 82.22 84.03

Walking 8 13.37 40.96 54.99 59.75 68.1 74.16 84.3 79.59 86.65
Jogging 42.2 61.16 73.08 78.81 70.48 79.12 78.41 87.42 80.95 85.84

Bending to Toes 49.35 42.48 64.84 63.61 67.37 71 77.59 86.02 81.13 85.86
Standing to Seated 46.86 41.97 59.03 59.75 64.25 69.19 76.57 83.09 85.15 84.58
Upper Body Twist 74.33 78.18 82.02 79.77 80.13 81.62 81.58 84.09 87.71 87.55

Arm Stretch 54.64 61.03 55.18 66.17 80.06 85.04 90.03 91.02 89.16 89.32
Average [%]: 40.17 46.57 55.75 63.15 64.09 69.38 78.1 85.09 83.05 85.17

to detect. Classification between the range of activities was

reliable, even rotation and subtle posture changes between

similar activities of Walking and Jogging could be classified

accurately. The Standing to Seated activity presented a further

challenge, due to occlusion of the chair and natural limb move-

ment, yet both classifiers were capable of achieving acceptable

classification results. Nevertheless, misclassification was an

issue for a number of activities that have similar movements,

with both classifiers finding it difficult to classify individual

frames without any information about past frames. In our

study, we found that by increasing the number of participants

enabled an enhanced representative tolerance of the variations

in anatomical joints and resulted in stable classification results.

VI. CONCLUSION

In this paper, we introduce SVM and RF to classify human

activities by use of projected Kinect kinematic data. We utilise

PCA to reduce the dimensionality, demonstrating the potential

improvement to classification accuracy. We show that even

with a small training set the classification results produced by

incrementally increasing the number of participants results in

steady increase classification accuracy. We conclude that with

eight and ten training participants, the classifiers produces a

steady average classification results of 80% and greater.

Our study has demonstrated that transposing Kinect kine-

matics to a lower-dimensional space and training the classifiers

on 8 to 10 participants that both SVM and RF can be reliable

for accurate classification. Between them, RF was overall more

accurate, but more expensive in terms of model training, while

SVM was more expensive in terms of classification rate per-

formance. Finally, the results revealed that RF would be suited

to our domain, with a three-fold increase in classification

rate when compared with SVM. To conclude, our study has

presented a number of potential uses for using RF with the

Kinect and 3D output for use in real-time classification of

activities and gestures related to physical rehabilitation.
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