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Abstract—The analysis of human motion as a clinical tool
can bring many benefits such as the early detection of disease
and the monitoring of recovery, so in turn helping people to
lead independent lives. However, it is currently under used.
Developments in depth cameras, such as Kinect, have opened
up the use of motion analysis in settings such as GP surgeries,
care homes and private homes. To provide an insight into the
use of Kinect in the healthcare domain, we present a review of
the current state of the art. We then propose a method that
can represent human motions from time-series data of arbitrary
length, as a single vector. Finally, we demonstrate the utility of
this method by extracting a set of clinically significant features
and using them to detect the age related changes in the motions
of a set of 54 individuals, with a high degree of certainty (F1-
score between 0.9 - 1.0). Indicating its potential application in
the detection of a range of age-related motion impairments.

I. INTRODUCTION

The analysis of human motion from video has a long history,
beginning in the 1970s with the experiments of Johansson
[1], which demonstrated people can recognise a wide range
of human motions, even if only the joints of an actor are
highlighted. This work led directly to the large multi cam-
era, marker based, motion capture systems, still regarded by
many as the gold standard for motion capture (mocap). The
introduction of the Kinect depth camera, in 2011, heralded
a new age of inexpensive markerless motion capture. Most
importantly, thanks the work of Shotton et al. [2], Kinect
reduces the depth image to a stick skeleton, who’s joints
while not strictly anatomically correct have been demonstrated
to have a high correlation with its marker-based kinsman
[3]. Originally conceived to rival the Wii, Kinect has now
found applications in areas as diverse as facial analysis [4],
surveillance, security and health.

In the nearly 6 years since its introduction, much effort has
been put into using the Kinect to analyse human motion. Often
but not always allied to some form of automatic classification
and/or quantification. Initially this work used classical machine
learning techniques such as Random Forests and Support Vec-
tor Machine (SVM). Although these techniques have provided
excellent results [5], the newer deep learning techniques offer
the possibility of detecting finer detail. This paper provides a

comparison of traditional machine learning approaches and the
newer deep learning techniques. their relative success so far
and details our own investigations using the K3Da dataset. Our
initial findings demonstrate that deep learning can outperform
traditional methods.

Scope of review

Human motion analysis is a broad topic, it encompasses
areas of facial movement, hand movement and sign language
recognition, rehabilitation and many others. This study limits
itself to the use of skeleton data for the analysis of motions in a
clinical setting. Motion analysis is used by health professionals
in the assessment of a range of diseases and conditions which
affects both young and old. Prior to the introduction of Kinect,
the cost and availability of marker-based systems meant that
only a small section of the population had access to this type
of assessment. The majority of assessments were, and still are
done subjectively, by direct observation. Or rely on patients
filling in a questionnaire. Even after the introduction of Kinect,
many studies [6], [7] and applications still require an expert
to interpret the results. This is where machine intelligence
can play a role, by providing quick and objective analysis
of human movement.

II. RELATED WORK

From the introduction of Kinect in 2011, the possibilities
for use in healthcare were recognised. Some researchers have
concentrated on rehabilitation while others work on the quan-
tification of movement. Before Kinect, attempts had been made
to use RGB cameras in rehabilitation schemes. These systems
used colour segmentation to identify limbs. This made them
very sensitive to light, shadows and distance from the camera.
Kinect’s technology is indifferent to these issues. Many studies
have used Kinect in rehabilitation, sometimes referred to as
the gamification of physiotherapy. It both reduces the strain
on therapeutic resources and encourages individuals, to repeat
their beneficial exercises [8], [9], [10].

Stone et al. [11] used Kinect in gait analysis. They used
it to calculate gait velocity and length in the lab. Followed
up, a year later, by a proof that Kinect cameras can be used



to continuously monitor gait in the home [7]. Dolatabadi et
al. [12] wrote a case study, detailing how they used features
derived from Kinect to unobtrusively monitor recovery from
hip replacements, in the home. Pu et al. [13] used Kinect to
assess balance in a selection of 100 people. These studies
calculated hand crafted features from the Kinect data and
analysed them to demonstrate their significance.

As the popularity of Kinect has grown a cottage industry
in validating Kinect against the gold standard for mocap
has sprung up. One of the most extensive comparisons was
carried out by a large team, led by Otte [14]. They vali-
dated both V1 and V2 of Kinect and found there was high
agreement between both versions, however there was some
spread between different joints, the head joint being the most
accurately tracked and feet joints being the least. Yang et
al. [15] demonstrated a small, linear discrepancy between
the Centre of Mass (CoM), calculated using Kinect and the
ground truth. As this discrepancy is linear, it can easily be
accommodated or just ignored for calculations which look at
the change of a quantity over time, for example postural sway.

The studies, highlighted above, rely on expert analysis by
humans. There has been no attempt to automate the process
or leverage machine intelligence. The next set of papers look
at, do just that.

A. Machine Intelligence

The most basic application of machine intelligence is to
apply a heuristic approach, as Bigy et al. [16] did in their
real-time system which can detect Freeze of Gait (FoG) a
problematic symptom of Parkinson’s disease as well as falls
and tremors [16]. Their simple rules-based approach makes
this easily applied in real time.

Alexiadis et al. [17], took a more sophisticated approach.
in their work related to an automatic method for evaluating
a dancer’s performance. They developed three metrics and
techniques to temporally align the movements of amateur
dancers with ground truth provided by professionals. Inspired
by this work, Su et al. [18] developed a system which uses
Dynamic Time Warping (DTW), a method previously used in
relation to hand writing and audio recognition, to compare the
movements of patients in their everyday life to a standard set of
movements. The aligned sequences are then classified using an
Adaptive Neuro-Fuzzy Inference System (ANFIS) which uses
a combination of artificial neural network and fuzzy logic.

A drawback with DTW is that it does not perform well for
periodic movements like waving. Wang et al. [19] proposed
the pairwise encoding of the relative joints, producing a much
more discriminating feature set. This process relies on the
normalisation of skeleton graphs so that all joint offsets are
relative to those in the first frame. This type of normalisation
has become the de-facto pre-processing step when calculating
features from Kinect skeletons.

Gabel et al. [20] extracted a feature set which expanded
on gait analysis to include arm kinematics and additional
body features namely, Centre of Mass (COM), Direction
of Progress (DoP) and Acceleration. These measures have

become common features of many skeleton based studies. A
combination of Multiple Additive Regression Trees (MART)
and a state model were used to predict the gait cycle. However,
machine learning was not used to produce a predictive model
for gait quality.

Greene et al. [21] had demonstrated the use of logistic
regression to quantify falls risk, with data derived from kine-
matic sensors but the groups using Kinect had yet to venture
in to prediction.

Cary et al. [22] decomposed each skeleton generated by
Kinect into a 17-value, feature vector of spherical coordinates.
This was calculated, in relation to torso bias, a 3-value vector
produced by applying Principal Component Analysis (PCA) to
the torso joints. They used these features to train an Artificial
Neural Network (ANN) to recognise a range of movements.

Kargar et al. [23], extracted both gait and angle-based
anatomical features from skeletons in order to quantify a
person’s physical mobility. To achieve this they used a SVM.

In 2016, Leightley et al. [5] detailed the first end-to-
end pipeline for the automated analysis and quantification of
human movement, using Kinect. The system uses a variety of
motion analysis techniques to first extract clinically significant
features and then quantify them using SVM.

B. Deep Learning

In the last few years, there have been a flurry of papers
that use deep learning to either extract features or analyse
human movement. LeCun et al. [24] demonstrated the ability
of Convolutional Neural Networks (CNN) to outperform SVM
models for static images.

The first 3D CNN was created by Ji et al. [25] to address
the issue of automatic feature extraction and recognition from
RGB airport footage. [jjina et al. [26] demonstrated the use of
3D CNNs with motion capture, Leightley et al. [27] applied
a similar network structure to clinically significant motions,
captured by Kinect. They demonstrated significant improve-
ment over the previous best method (SVM) in differentiating
between good and unstable motions.

In this paper we demonstrate a hybrid approach to deep
learning. We use manually extracted clinically significant
features and then use a deep, fully connected neural network to
classify the motion. When comparing this approach to random
forests and SVM. The deep neural network out performs the
other classifiers.

C. Datasets

Datasets are a constant issue when training deep neural
networks. The largest dataset currently available for RGB data
is the Sports-1M dataset [28], which contains one million
sports videos culled from YouTube and separated into 487
classes [29]. RGB-D (depth) datasets are much smaller. The
largest currently available being NTU RGB+D [30] with
56,880 recordings of 50 individuals, carrying out 60 classes of
movement. Zhang et al. [31], identified a total of 44 RGB-D
datasets. 7 of these concentrate on tracking multiple individu-
als and 10 use an array of multiple cameras. Of the remaining



27, only 2 are captured in laboratory conditions. However, the
movements they capture are not clinically relevant.

To address the issue of small datasets, the creation of
synthetic data has become popular, indeed the random forest
used to generate Kinect skeletons uses synthetic data in its
training set. Validation issues have made researchers in clinical
studies, shy away from this approach to bulk out small
datasets. Zhang et al. [32] proposed a method for synthesising
data, within the network that improved the recognition rate
of motions. It is reported that this form of enhancement,
overcomes the limitations of the human defined pre-processing
approaches. In time this type of approach may offer answers
to those objections found in the clinical sphere. To this end
we demonstrate an automatic method for the production of
a family of vectors that can fully describe a motion of any
length from a time-series of Kinect skeletons.

Currently, the K3Da dataset, highlighted in [33] is the only
dataset that contains RGB-D data of clinically important ac-
tions. It contains 576 recordings of 54 individuals completing
the 13 movements from the Short Physical Performance Bat-
tery (SPPB) [34]. This is the dataset used in our investigations.

METHODS

Someone with good postural control, when standing, will be
able to keep their Centre Of Mass (CoM) over their Base of
Support (BoS). Someone with poor postural control, their CoM
will more often be outside their BoS and they will initiate more
frequent and larger postural corrections, evident as higher
postural sway, or poor balance. The corrective actions are
initiated through motor control pathways achieved via joint
moments applied around the ankle, knee and the hip [35]. The
extent to which these different joints are active depends on the
extent of the postural challenge. When the CoM during quiet
standing irrecoverably deviates from the base of support, the
person will take a step to rescue from falling. During two-
legged quiet standing, the base of support is stable in the
medio-lateral (ML) directions, so the ankle and hip strategies
[36] mainly work to minimise instability in the anterior-
posterior (AP) axis. In less stable foot positions, such as one-
foot stand, instability around the ankle mainly occurs in the
ML-axis. To measure deviations in the AP axis, we calculate
the body lean angle, that is the Euler angle between the ground
plane and the middle of the spine. Norris et al. [37] point to
the loss of postural control also resulting in movements in
the ML axis. To account for this, we record the position of
the spine joints in the ML axis, ignoring movements in the AP
axis to reduce noise. Together these features give us a measure
of postural sway.

In addition to measuring sway, we directly estimate the
CoM position, Leightley et al. [38] found this to be a useful
measure of steadiness. We complete our features by calculating
Euclidean distance between the base of the spine and the
head and the Euler angle between the base of the spine and
the neck. Ejupi et al. [39] discusses the importance of visual
and somatosensory systems, as well as the vestibular system
in maintaining balance. To factor these items into our study,

we chose tasks that would challenge all three systems. The

movements used and the reason for their inclusion are detailed

in table I.
TABLE I
MOVEMENTS USED IN THIS WORK, ALONG WITH THE RATIONAL FOR
INCLUSION
Movement Description Reason for inclusion
Name
Chair Rise Starting from a seated This measure is
position, rise up with legs indicative of leg
fully extended, then sit muscle power,
down again, arms are held associated with falls
across the chest. Repeat and physical
five times, as quickly as impairment [40].
possible.
Stand, 2 Standing feet close This is used to provide
Feet(eyes together, eyes open and an indication of
open) arms extended parallel to postural sway in a
the floor. Test is quiet stance, two feet
terminated after 10 on the floor.
seconds.
Stand, 2 Standing feet close Removing the visual
Feet(eyes together, eyes closed and cues make the
closed) arms extended parallel to participant rely on

vestibular and
somatosensory
feedback. Both these
systems are effected by
age [39].

Balancing on one leg
provides a small base
of support, inducing
postural sway.

the floor. Test is
terminated after 10
seconds.

1 leg balance
(open eyes)

Standing on one leg, 6
inches off the ground,
arms extended
horizontally, eyes open.
Test terminated after 10
seconds or when the
second leg touches the
ground.

Standing on one leg, 6
inches off the ground,
arms extended
horizontally, eyes closed.
Test terminated after 10
seconds or when the
second leg touches the
ground.

1 leg balance
(closed eyes)

During this exercise,
the individual must use
the vestibular and
somatosensory systems
to maintain balance.

In this work we used the skeleton data from the K3Da
dataset [41], which is the largest data set of it’s kind. It consists
of, 26 young and middle aged people (18-48 years, 17 male
and 9 female) and 28 older age people (61-81 years, 14 male
and 14 female) carrying out the SPPB. None of the participants
have any non-age-related movement issues.

Using the methods outlined in fig. 1, we automated the
process of feature encoding and classification of an individual,
based upon their motion alone. The data processing step was
carried out using Matlab. Matlab was also used for classifica-
tion by traditional machine learning. The Theano framework
was used to build the neural network. The following section
covers each step in detail.

Pose Normalisation

From the skeleton data, a series of matrices were con-
structed, one for each frame of the movement (30 fps). The
skeletons were normalised by aligning all frames to the Spine
Base joint of the first frame, using equation 1.
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Fig. 1. Pipeline to extract medically significant features from a RGB-D video stream
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Feature Encoding

After normalisation, a set of features, shown in Table II, was
calculated. Although the Kinect camera provides coordinates
for 25 joints, we found that features derived from just the
torso joints, as defined in [5], plus a calculation of CoM were
enough to discriminate the differences in motions of young
and older people.

TABLE I
FEATURES EXTRACTED

Feature
Euclidean Distance

Description Vector length
Distance between | 1

Spine base and Head
Angle between Spine | 1
base and Neck
Euler angle between | 1
Spine Mid and the
ground plain

Mean position | 3
between Spine mid,
Hip left and Hip right
XY position of the
torso joints

Euler angle

Body Lean Angle (AP axis)

CoM

Torso ML Axis

Euclidean Distance was calculated between the spine base
and head, using equation 2.

distance = \/(v1 — 2)2 + (y1 — y2)2 + (21 — 22)2 (2

Euler Angle was calculated between the Spine base and
Neck joints, using equation 3.

B S.Q
© = arctan <||S|| |c2||>

Body Lean Angle is defined as the Euler Angle between the
ground plane and the Spine mid joint. This represents changes
in the AP axis.

Centre of Mass (CoM) of any body, is the mean point
that the mass of that body acts. For a human body standing
erect, the centre of mass is located around the navel. CoM was
calculated using equation 4, where J1 = Spine mid, J2 = Hip
left, J3 = Hip right, where

3)

Jlg +J25 4+ J3,

CoM, = 3
1 2
COMy:Jy+J3y+J3y @)
J1,+J2,+ J3,
CoM, = + 3 *

ML Axis This represents the frame-by-frame position of
the torso joints in the ML axis.

Motion Representation

K-mean Clustering is used to convert a time-series of
differing lengths (depending on individual recordings), into
a set of representative poses of a known length. The k& was
determined empirically for each type of motion, 5 for chair
rise and 2 for all other movements.

The centroid poses of each cluster was identified and
extracted. Next, the centroids were concatenated together in
time-order to produce a 1D vector that provides an example
of the whole motion. A label is then added, 1 for young and
0 for older.

Simply choosing the centroid would not provide enough
examples to train the models. More examples were collected,
using the following method:-

1) Each member of a cluster were ranked using Euclidean
distance from the centroid.

The closest 50% were selected. To ensure that each
vector represents the whole motion, only n number of
motion were produced, from each time-series, where n
is the number of members in the smallest cluster.

2)

This method produces a family of feature-sets which are
representative of a person’s motions. By providing a family
of similar examples, we increase the number of examples
retrieved from a time-series, many times, without the need to
resort to synthesising data. This approach makes the models
more robust as they are trained on a diverse but representative
feature-set.

Evaluation

We compared 3 methods for classification, SVM, Random
Forests and Deep Neural Networks. SVM being widely re-
garded as the best choice in traditional machine learning for a



binary classification, but requires extensive tuning of hyper
parameters to achieve top results. Random Forests, on the
other hand are much simpler to train and provide excellent
results for both binary and multi-class scenarios. We chose
these methods in our study to allow us to compare the best of
traditional machine learning with deep learning. The neural
network consisted of several fully connected layers which
learned to separate young from older based on hand crafted
features neural networks were not used to extract features.
Feature extraction by neural networks, is an area which will
be explored in future work.

Validation

10-fold cross validation was used to assess the effectiveness
of each approach. In K-fold validation every data point gets
put into the test set exactly once, and into training set k-1
times. This allows the results to be averaged over the whole
dataset.

RESULTS

The results, summarised in Table III, are similar to those
found in the literature for traditional machine learning. In
addition we were able to demonstrate that deep learning is
able to outperform traditional methods.

Using our method, that automatically identifies the essence
of a motion and then collects many examples of that motion
from a time-series of arbitrary length, we were generate
enough examples to allow both traditional and deep learning
methods to discriminate between young and older people, with
a high degree of certainty. This is demonstrated by high F1-
score and Matthews Correlation Coefficient (MCC) scores for
all movements, with the chair rise producing the best overall
classification.

These results are encouraging. However, we do accept that
although, the K3Da is one of the larger depth datasets and the
only one currently that contains clinically significant move-
ments, it is still a small dataset when compared with those
that contain RGB information. Consequently, our results may
suffer from overfitting. To address this issue, our future work
will involve building a large dataset of clinically significant
depth data.

DISCUSSION

There is a pressing need to develop a portable system that
can help in the assessment of physical impairment and frailty.
Currently the assessment of individuals requires a high degree
of training and experience, which can lead to inconsistency
from one location to the next.

We have taken the first steps in developing a tool which
could be used by clinicians in detecting the changes in motion
that advance with age. We demonstrate its utility by separating
a random sample of young and older individuals from the
K3Da dataset.

TABLE III
ALL THREE MACHINE LEARNING ALGORITHMS SEPARATED THE
EXTRACTED FEATURES EASILY

Action Model Acc | Prec | Recall| Fl1- MCC
score

Balance 1 leg SVM 0.999| 1.000| 0.998 | 0.999 | 0.998
> Random 0.998| 0.998| 0.998 | 0.998 | 0.998

eyes open Forest
Deep 0.977| 0.977| 0.979 | 0.978 | 0.976

Learning
Balance 1 leg SVM 0.998| 1.000| 0.996 | 0.998 | 0.995
| Random 0.999| 0.998| 1.000 | 0.999 | 0.999

eyes closed Forest
Deep 0.985] 0.983| 0.993 | 0.988 | 0.986

Learning
Stand 2 feet SVM 0.999| 1.000| 0.998 | 0.999 | 0.997
? Random 0.999| 1.000| 0.998 | 0.999 | 0.997

€yes open Forests
Deep 0.991| 0.994| 0.994 | 0.994 | 0.985

Learning
Stand 2 feet SVM 0.995| 0.994| 0.994 | 0.996 | 0.992
? Random 0.999] 0.998| 1.000 | 0.999 | 1.000

eyes closed Forests
Deep 0.998] 0.998| 0.998 | 0.998 | 0.988

Learning
SVM 1.000 | 1.000| 1.000 | 1.000 | 1.000
Chair Rise Random 1.000| 1.000| 1.000 | 1.000 | 1.000

Forests
Deep 1.000| 1.000| 1.000 | 1.000 | 1.000

Learning

CONCLUSION AND FUTURE WORK

Our current feature set is working well for a simple two
class solution. However, our future work will concentrate on
the prediction of mobility issues. The current method may
lack the power needed to discern the small changes needed to
predict future issues. Hence, we intend to consider the use of
deep learning auto-encoders and convolutions, to automatically
extract feature sets from motions encoded in depth data. Using
this line of research we may be able to produce a complete
pipeline exclusively using deep learning.

We recognise that in order to build a robust end-to-end deep
learning solution we need many more examples that exists
in the K3Da dataset. To this end we have taken the first
steps towards building a larger dataset of clinically significant
motions. We hope that in turn, this dataset maybe a useful
resource for other researchers.

Finally, to fulfil our ambition of developing a tool, useful
to clinicians, we must have a system that works in real time,
taking the data feed directly from the Kinect camera.
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