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Abstract

With the advent of marker-based motion capture, attempts have been made to recog-

nise and quantify attributes of “type”, “content” and “behaviour” from the motion data.

Current work exists to obtain quick and easy identification of human motion for use in

multiple settings, such as healthcare and gaming by using activity monitors, wearable

technology and low-cost accelerometers. Yet, analysing human motion and generating

representative features to enable recognition and analysis in an e�cient and comprehen-

sive manner has proved elusive thus far. This thesis proposes practical solutions that

are based on insights from clinicians, and learning attributes from motion capture data

itself. This culminates in an application framework that learns the type, content and

behaviour of human motion for recognition, quantitative clinical analysis and outcome

measures.

While marker-based motion capture has many uses, it also has major limitations that

are explored in this thesis, not least in terms of hardware costs and practical utilisation.

These drawbacks have led to the creation of depth sensors capable of providing robust,

accurate and low-cost solution to detecting and tracking anatomical landmarks on the

human body, without physical markers. This advancement has led researchers to develop

low-cost solutions to important healthcare tasks, such as human motion analysis as a

clinical aid in prevention care. In this thesis a variety of obstacles in handling marker-

less motion capture are identified and overcome by employing parameterisation of Axis-

Angles, applying Euler Angles transformations to Exponential Maps, and appropriate

distance measures between postures.

While developing an e�cient, usable and deployable application framework for clinicians,

this thesis introduces techniques to recognise, analyse and quantify human motion in the

context of identifying age-related change and mobility. The central theme of this thesis

is the creation of discriminative representations of the human body using novel encoding

and extraction approaches usable for both marker-based and marker-less motion cap-

ture data. The encoding of the human pose is modelled based on the spatial-temporal

characteristics to generate a compact, e�cient parameterisation. This combination al-

lows for the detection of multiple known and unknown motions in real-time. However,

in the context of benchmarking a major drawback exists, the lack of a clinically valid

and relevant dataset to enable benchmarking. Without a dataset of this type, it is dif-

ficult to validated algorithms aimed at healthcare application. To this end, this thesis

introduces a dataset that will enable the computer science community to benchmark

healthcare-related algorithms.
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Chapter 1

Introduction

In this chapter a brief introduction to the field of human motion analysis,

representation and recognition is given (expanded further in Chapter 2). A number of

important terms are defined and the thesis objectives are stated.

1.1 Introduction

Human action recognition has been actively researched since the early 1980s, this is

due to its promise in many application domains, including surveillance, entertainment,

healthcare and human-computer interaction [6]. The goal of human action recognition

is to recognise human motion, both in real-time and after-the-fact from an unknown

sequence of motion capture (MoCap) data. It is possible to identify and distinguish

di↵erent actions because the brain is capable of both learning new actions and recognising

them. However, in computer vision, this same problem has proven to be one of the most

di�cult and lasting challenges in the field. Given the current state-of-the-art [6–9], a

successful algorithm for human action recognition requires one to define the problem

with a more specific focus, notably on representation, interpretation and analysis.

Human action is inherently complex, however it is possible to decompose body motion

into three di↵erent types of action groups. The typical objective of human action

recognition is to classify actions that belong to specific “action” groups. Following

the taxonomy of Aggarwal and Ryoo [7], actions can be categorised into three groups:

gestures, actions and activities. Broadly these can be defined as follows:

1
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• Gestures are fundamental atomic components describing the meaningful motion

of a participant. For example, “extending a leg” and “raising an arm”.

• Actions are single activities that may be composed of multiple gestures arranged

in temporal order. For example, “walking”, “waving” and “drinking”.

• Activities are complex action sequences comprised of a combination of actions.

For example, “Timed-Up-and-Go” is an activity consisting of multiple actions,

such as chair rise, walking and turning.

Anthropometric and performance variations di↵er with participant groups, notably

within the elderly population. Understanding the inter-/intra-class variation between

these groups can aid in developing tailored solutions. However, the variations are so

subtle that it is very di�cult to track these changes with the human eye alone. While

many people remain healthy, active and engaged into later life, studies have indicated

that a minority, approximately 9% of the elderly population, defined as above the age

of 60 years, su↵er from age-related illnesses such as frailty [10]. Frailty relates to the

general decline in multiple body systems, which leaves participants vulnerable to illness

or trips and falls. Frailty is an indicator of general health and well-being, it is usually

assessed by asking the participant to perform several standardised test (e.g. walk back

and forth, sit to stand) during which a clinician observes the activity for stability, du-

ration, coordination and posture control resulting in clinical outcome measure [11–13].

However, only a handful of works have sought to unite Computer Vision approaches

with healthcare methodology to provides a more informative decision of the participants

performance when understanding a range of clinically relevant motions, such as Wang

et al. [14], Prochnow et al. [15] and Galnaa et al. [16]. In the majority of cases, these

approaches provide a single indicator instead of a detailed analysis, which would provide

clearer detailed supportive of clinical measures.

In this thesis, three problems are considered. Firstly, human action recognition; in which

the focus is placed on recognising MoCap solely on the characteristics within the patterns

of motion they exhibit. This approach di↵ers from other techniques of human action

recognition, such that the proposed methods seek to address viewpoint di↵erence, style

diversity, anthropometric variations and execution-rate variations that are ever present

in human motion by use of e�cient representations. Secondly, motion analysis and
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evaluation; where identification of di↵erent participant groups mobility based solely on

decomposing the spatio-temporal relationship of human skeleton. Finally, uniting these

two solutions a fully realised system for human action recognition and analysis is devel-

oped and deployed in the field. These include benefits such as a novel clinical assessment

tool to provide a novel low-cost for stability and mobility assessment. Its main features

include real-time performance, ability to classify a diverse range of clinically relevant

actions/activities and detect subtle motion variations between participant groups.

1.2 Motivation

The ability to detect, track, recognise and analyse human motion is advantageous for

a wide range of high-level applications that rely on a representations extracted from

visual input. Interacting with humans and understanding their activities are at the

core of many problems in human-computer interaction (HCI). During the past 30 years,

many approaches have been proposed to address these problems [6, 8, 9]. However, these

proposals are far from suitable for practical application. Due in part to the challenging

task of tracking, detecting and analysing human motion, which in part is due to a

reliance on noisy low-level indiscriminate features.

Some examples of applications that could benefit from reliable e�cient human action

recognition are:

• Automated surveillance systems that monitor the general public, used in places

such as airports, government buildings and banks. Applications to monitor and

detect suspicious activity without human interference have yet to be realised. Hav-

ing an automated solution vastly improves the detection of suspicious activity as

it reduces the possibility of human misinterpretation and misunderstanding.

• Safety systems for detecting vulnerable users, most notably the very young or the

elderly. Systems to monitor users in and around busy train stations or on cars to

warn others of possible danger or for security monitoring.

• Health monitoring and preventative care for patients. Applications to seamlessly

detect and track humans within their own environment. Coupled with analysis
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of typical every day activities. For example, a system to monitor the elderly and

alert the local hospital if they have a fall or trip.

Currently, to the author’s knowledge no framework exists that can perform human

action recognition reliably for the above applications. Although the problem as a whole

remains unresolved, specific focus should be made to address the associated challenges

to classification and recognition.

One of the main challenges is how to e�ciently extract and represent features from

raw data. These features should be distinctive and uniquely represent each action class

(where a class represents a specific action, for example walking or jumping), and be sim-

ilar in nature to those actions from the same class. Nevertheless, this is a di�cult task

due to viewpoint di↵erence, style diversity, anthropometric variations and execution-rate

variations exhibited by participants that can lead to large intra-/inter-class variations.

In addition, occlusion and overlapping limbs will further introduce noise to the process.

In the literature, feature detection and representation are two main components in rep-

resenting MoCap for classification and recognition. In particular, several approaches

focused on encoding the articulated skeletal from each frame of MoCap to combine or

link into discriminative representative elements [17–20]. These approaches have demon-

strated the ability to handle variability in data volumes, however are computationally

expensive when the time to process is considered.

More recent e↵orts have focused on modelling MoCap with a limited number of repre-

sentative elements, otherwise referred as the exemplar paradigm [21]. A small number

of “exemplars” are generated by generalising the spatio-temporal variation in the state

space (e.g. [21], [22], [23]). If we consider that by representing the most descriptive and

representative elements of each action with the exemplar paradigm, the number of sam-

ples required for training will be greatly reduced. Further the reduction for the rate of

false-positives by reducing the intra-/inter-class variations would aid in the recognition

process. However, the performance of various descriptors depends on the selection of

appropriate action sequences, for example selecting the most optimum performance of a

“walk”. Obviously, this is an unassailable task as we inherently all walk di↵erently and

a “walk” between two persons can be di↵erent in gait and speed.

The advancement of imaging technologies in the past decade, such as the depth sensor,

has presented a number of new solutions to marker-less-/marker-based tracking when
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compared to traditional RGB-based approaches [6]. One such approach has revolu-

tionised the field of marker-less tracking, Shotton et al. [24] introduced the underlying

Microsoft KinectTM360/One (referred as “Kinect 360” or “Kinect One”) sensor algo-

rithms which are quick and e�cient in predicting the 3D positions of body joints from a

static depth map image provided by a depth camera, without using any temporal infor-

mation. The approach uses a single depth map and applies randomised decision forest

algorithm to automatically detect, segment and locate pre-defined anatomical joints on

the body of the user in front of the device. But, of further interest is the capability of

the algorithm to provide 3D orthogonal coordinate locations - otherwise referred to as

MoCap (similar to that extracted from marker-based approaches).

In a clinical setting the most prevalent methodology suggests using one or a combination

of intrusive sensors, such as body-based accelerometer or markers. Still, in recent years

the computer vision community has proposed an array of solutions to aid in the decision-

making and provide simple kinematic measures within the healthcare sector. These

works have predominantly focused on depth sensor technology, such as the Microsoft

Kinect, which has demonstrated a capability for tracking in home and healthcare settings

(e.g. [16, 25–27]).

1.3 Problem Statement

The problem statement addressed by this thesis is concisely stated as follows:

Human motion is inherently complex, while techniques exist to extract anatomical

tracking information, understanding and analysis of the data is a challenging and

di�cult task which remains unresolved. The process should be optimised and refined for

use in real-world settings. Firstly, a method that represents high-level human motion

e↵ectively and e�ciently as well as handling intra-/inter-class variations would

improve the recognition process. Secondly, a framework that incorporates recognition to

analyse and quantify human mobility for use in a clinical setting would provide greater

understanding of the motions themselves.
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1.4 Contributions of this Thesis

The main contributions of this thesis as follows: (i) Feature extraction and representation

(ii) Recognition of MoCap (iii) Motion analysis of human mobility. This thesis focuses

on human action itself and does not explicitly consider the context such as background,

interactions between participants or objects. The motivation and context of this work

is carefully introduced over the course of the following two chapters, but a concise list

of the resulting contributions with relevant sections forward referenced is given below.

• Chapter 4 introduces two novel approaches for human action recognition using the

exemplar paradigm, feature selection and pose ranking. Overall both approaches

identify and extract the key poses of marker-based MoCap to provide a more

compact and e�cient representation.

• Chapter 5 introduces a novel framework for identifying and selecting key poses

from marker-based MoCap, and a framework for recognising human action in real

time.

• Chapter 6 introduces a detailed analysis of the Microsoft Kinect 360 suitability for

detecting typical daily movements utilised in a clinical setting using state-of-the-art

machine learning techniques and marker-less tracking techniques.

• Chapter 7 presents a detailed analysis and evaluation of the Microsoft Kinect One

depth sensor to identify age-related mobility changes between age groups using

marker-less tracking techniques.

• Chapter 8 presents an application framework utilising marker-less depth sensor

technology to detect mobility concerns using a digitalised assessment framework.

This framework provides clinical feedback to aid in prevention of mobility-related

disease in later life.



Chapter 2

Literature Review

This chapter explores the state-of-the-art work in the field of feature extraction, feature

representation, human motion analysis and recognition. Supplemented with a concise

discussion on the field and highlighted areas of possible research interest is presented.

2.1 Introduction

In this chapter an overview of the field of articulated human feature representation, mo-

tion analysis and recognition is presented. Due to the large volume of work in this area,

the overview is not intended to be exhaustive but rather define the areas for which this

thesis attempts to contribute. Comprehensive reviews of the literature can be found in

a number of review papers (e.g. [6–9]). This literature review starts with an analysis

of feature extraction and representation methods, which is the first step in any recog-

nition and/or analysis framework. Instead of working with raw video sequences (e.g.

depth map images and RGB) which contain many pixels and an abundant source of

high-dimensional complex data, it is necessary to extract a set of features which are

considered as more compact representation of the input data. This process is referred

to as feature extraction. Then existing techniques for feature extraction and represen-

tation of MoCap data extracted from depth map images are discussed. Since human

motion is inherently complex, and will generate di↵erent vectors and features we need

to generate a vector representation for MoCap sequences which is consistent for use with

di↵erent motion capture (MoCap) types and action types. The process to generate a

7
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unique-feature based representations based on extracted features is feature representa-

tion. Finally, while human motion can be represented in the form of vector-features,

analysis and understanding of the temporal/spatial relationship to allow for robust and

e�cient understanding is referred to as motion analysis.

2.2 Feature Extraction and Representation

The last 20 years has seen a large shift in the types of image modalities utilised, early

works focused on extracting two-dimensional features from RGB video sequences. Most

recently, the community has shifted to extracting three-dimensional features from depth

map images (obtained via depth sensors). Each aspect, and the major works of each

domain, is discussed hereafter.

2.2.1 Feature Extraction and Representation from RGB Videos

Broadly following the taxonomy defined by Poppe [6], feature extraction techniques for

RGB video sequences can be divided into two categories; global and local representations.

Global representations encode extracted features as a whole, and are obtained in a top-

down structure. Problematically, they are very sensitive to environmental variables such

as noise and occlusion. Local representations describe the extraction and collection of

local features specifically in the spatial-temporal domain, and are obtained in a bottom-

up structure. Local representations are less sensitive to noise and partial occlusion yet

rely heavily on the accuracy of local interest detectors. These categories are described

briefly to provide context to the domain and evolution of the state-of-the-art into depth

imagery.

2.2.1.1 Global Representations

Global representations usually involve two steps; a person is localised in the image using

background subtraction and/or tracking. Then, the region of interest is encoded as a

whole, which results in an image descriptor being formed. Common global representation

approaches are obtained using silhouettes, edges or optical flow.
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One of the early works to use silhouettes is by Bobick and Davis [28]. The silhouette is

extracted from single-view two-dimensional images and aggregated di↵erences between

subsequent frames of the sequence is computed. The di↵erences are combined to generate

a binary motion energy image (MEI), which identifies where motion occurs. Also, a

motion history image (MHI) is constructed to indicate motion intensity. Ziaeefard and

Ebrahimnezhad [29] extended the use of silhouettes, by modelling the spatio-temporal

dynamic of human action captured encoded in normalised polar-histograms. The authors

describe human action within normalised polar-histograms in two ways; firstly, the

spatial element, which is the body at each time step. Secondly, temporal element which

is the evolution of body poses over time. These elements build a top-level histogram

representation of the sequence. Image skeletonisation of silhouettes was introduced by

Fujiyoshi and Lipton [20], in which a star representation is extracted based on motion

points in relational to a central point. Chen et al. [30] extended this technique further.

The authors extracted contours to form a star skeleton, which describes the angles before

a reference line, and the lines from the centre (star point) and outlying points of the

contour.

A single, two-dimensional view of a person may not always be suitable for detection

and representation. Several works have sought to utilise multiple cameras, with sil-

houettes extracted from each. Using this system, Zhu et al. [31] extracted silhouettes

from each camera to represent each time period. Cherla et al. [32] used two orthogo-

nally placed cameras and combined the features of both. This resulted in a somewhat

view-invariant approach, however fails when certain limbs are occluded (such as arms

or legs). Weinland et al. [33] combined silhouettes from multiple camera points into a

three-dimensional voxel model. These models are very accurate, so long as they are cal-

ibrated accordingly. The authors proposed the use of motion history volumes (MHV),

which is an extension of Bobick and Davis [28] motion intensity images into a three-

dimensional domain. To overcome view invariance, each volume is aligned using Fourier

transforms on the cylindrical coordinate system around the medial axis.

Several works have sought to utilise motion information instead of silhouettes. Selecting

a region of interest (ROI), it can be described using optical flow techniques, the pixel-wise

oriented di↵erence between subsequent frames. Liu et al. [34] calculated the optical flow

using spatial-temporal patches. Due to large volumes of data, they extract a Pyramidal

Motion Feature and select the most discriminative frames based on a ranking scheme. Ali
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and Shah [35] utilise optical flow to obtain a range of kinematic features. These include

divergence, vorticity and gradient tensor features. Principle Component Analysis (PCA)

is applied to determine dominant kinematic modes.

Global representations are troubled by noise, partial occlusion and viewpoint di↵erences.

By dividing the ROI into a fixed spatial or temporal grid, some of these limitations can

partly be overcome. Kellokumpu et al. [36] obtained a local binary pattern along the

temporal dimension of a sequence and store a histogram of non-background di↵erences

in a spatial grid. This allows each cell in the grid to provide an observation of the image

locally. Optical flow in a grid-based representation is used by Vrigkas et al. [37]. They

propose a learning-based framework to describe an image sequence by using a time-series

of optical flow of motion features.

2.2.1.2 Local Representations

Local representations focus on detecting local spatial-temporal interest points first, then,

local patches are calculated around these points [38–40]. Features that describe the

observed video sequence are a collection of these detected local patches. Compared to

global representations described previously, local representations are less sensitive to

noise and full/partial occlusion, and do not require background subtraction or point

tracking [41, 42].

Figure 2.1: Space-time volume of stacked silhouettes captured by a single camera
( c�IEEE 2007. Reprinted, with permission, from Gorelick et al. [1]).

Laptev and Lindeberg [43] extended the Harris corner detector [44] to include a space-

time element (three-dimensional). The extension detects local structures of the image

that have significant local variations in both space and time. A drawback to these

types of approaches is the stability in the interest points. Dollar et al. [45] applied

Gabor filtering on the spatial and temporal dimensions individually. The number of
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interest points is adaptive based on the neighbourhood in which local minima is set.

This provides more stable interest points. Blank et al. [1, 46] proposed the stacking

of silhouettes over a given time sequence to form a spatio-temporal volume (as seen

in Figure 2.1), with a Poisson equation used to derive local space-time saliency and

orientation features. By using global features that are computed by calculating the

weighted moments over the local features robust localisation, alignment and background

subtraction are required to work e�ciently.

Schüldt et al. [47] calculated patches of normalised derivatives in space and time to

provide local descriptors. This provided a more robust feature representation. Laptev

et al. [48] utilised local grid-based descriptors to summarise local observations within

grid cells, allowing them to ignore small spatial and temporal variations. They use His-

togram of Oriented Gradients (HOG) and Histogram of Oriented Flow descriptors. Dou

and Li [49] extended the use of Scale Invariant Feature Transform (SIFT) and motion

temporal templates with spatio-temporal interest points based appearance descriptor.

The authors unite MHI and MEI with spatio-temporal points detector. With these

representations they are transformed into a three-dimensional SIFT.

Similar to global representations, local representations use grid-based techniques to bin

the patches into spatial or temporal elements. Spatially, Zhao and Elgammal [50] bin a

spatial grid of local descriptors in histograms, with di↵erent levels of granularity. Each

patch is weighted according to their current temporal distance to the current frame.

Laptev and Pérez [51] use a temporal grid instead of a spatial grid. The authors use

HOG and optical-flow, obtained from the interest points to form a spatial-temporal

grid-based representation.

Spatial-temporal grid-based representations model the relationship between local de-

scriptors. Yet, they often contain irrelevant and erroneous information. Scovanner et al.

[52] developed a word co-occurrence matrix, and iteratively compared all the di↵erent

pairs of words with similar co-occurrences until a threshold is reached. This ultimately

leads to a reduced codebook size, as similar actions are likely to generate similar word

distributions. Patron-Perez and Reid [53] represents features as binary variables, which

indicate the presence of a code word. The framework approximates the joint distribution

of features using first-order dependencies. To enable analysis of these features a graph

between all pairs of features is formed.
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2.2.2 Feature Extraction and Representation from Depth Sensors

The introduction of low-cost RGB-D sensors (e.g. Microsoft Kinect 360/One, ASUS

Xtion PRO) has had a positive e↵ect in the research domain of action classification

and human motion analysis by providing both depth map images and RGB images

simultaneously. These devices, otherwise referred to as range sensors, output a two-

dimensional array of distances (typically millimetres) which correspond to each pixel

point in the image. Research focusing on feature extraction and representation has been

extensively explored for RGB images, however research on depth maps has been limited

in scope.

Early works focused on extracting two-dimensional silhouettes of simple human body

shapes, then model the evolution of silhouettes in the temporal domain. In a two-

dimensional image (as discussed previously) this is a di�cult task. However, in a depth

map image, the silhouette of a person can be extracted more easily and with greater

accuracy [9]. This is because the depth image provides a greater number of descriptive

features to enable a more robust detection of the silhouette. Depth-map based methods

rely mainly on features, either local, or global, extracted from the space time volume.

Several works have sought to utilise MHI and space-time volume approaches of the depth

map image silhouettes to provide a more robust representation. Li et al. [54] extended

the bag-of-words technique for use in the three-dimensional domain. They sample a bag

of three-dimensional points on the planar projection of the three-dimensional depth map

image to characterise a set of salient postures, which corresponds to the nodes in the

action graph. Importantly, the number of planar projections used controls the number

of points. However, due to occlusion and noise within the depth map images, loss of

spatial context information between interest points is observed. This makes it very

di�cult to accurately sample interest points given the geometry and motion variance

across di↵erent persons and environments. To address this, Vieira et al. [55] proposed

the Space-Time Occupancy Patterns feature descriptor. The depth map sequence is

represented as a 4D space-time grid with a saturation framework employed to enhance

the roles of the sparse cells. These cells typically consist of interest points and contours

of the silhouettes. Wang et al. [56] proposed the Random Occupancy Pattern to address

the issue of noise and occlusion by treating the three-dimensional action sequence as a

4D shape. These were constructed by randomly sampling three-dimensional sub-volumes
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at di↵erent locations with di↵erent sizes. The framework was further complimented by

a weighted random sampling scheme enabling e↵ective identifying of the participants’

contours by identifying a player mask.

Figure 2.2: Depth Motion Map framework and visual examples ( c�ACM 2012.
Reprinted, with permission, from Yang et al. [2]).

Yang et al. [2] introduced Depth Motion Maps (DMM), which are formed from projecting

onto three orthogonal planes (as seen in Figure 2.2). The DMM stacks the aggregated

MEI, computed in the temporal domain of a video sequence for each plane. HOG is

employed to describe the DMM. Ni et al. [57] proposed a Three-Dimensional Motion

History Image (3D-MHI), which extends the original technique [28] with two additional

depth change induced MHI. A forward and backward motion image which encode the

history of a sequence of images is computed and combined. Wu et al. [58] proposed

extending MHI by combing MHI with Gait Energy Information (GEI) and inversed

recording for use with depth map images. The GEI compensates for non-moving re-

gions and multiple-motion-instance regions. This is complimented by inversed recording

which assigns a larger value at initial motion frames instead of the last motion frames.

The extended technique has been demonstrated to outperform the original MHI [28] on

action-oriented datasets.
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Most recently, Oreifej and Liu [59] introduced a 4D histogram descriptor which encodes

the distribution of the surface orientation of the 4D volume of time, depth and spatial

coordinates. As a depth map image (or sequence) is a depth function of time and space,

histograms are constructed. While depth map images can provide descriptive and useful

information, Zhang and Parker [60] proposed a 4D local spatio-temporal descriptor to

encode human activities. The 4D feature is a weighted linear combination, combing a

visual and a geometric component. The method concatenates per-pixel responses and

their corresponding gradients within a spatial-temporal window into a high-dimensional

feature vector (which contains 105 elements). A clustering technique, k-means [61] is

employed as a dimensionality reduction technique to separate and group actions into

vocabularies.

Other approaches have focused on extracting silhouettes and generating other forms

of representations. Jalal et al. [62] utilise Random transform (R) to compute a two-

dimensional projection of a silhouette which has been extracted from a depth map image

along a specified view direction. R transform-to-transform are employed to convert

the two-dimensional projection into a 1D profile for each frame. A representation is

then encoded for each frame of the sequence. Wang et al. [18] introduced the actionlet

ensemble model of depth map images. The authors sought to recognise interaction

between objects and/or other humans. This was achieved by capturing the inter-/intra-

class variations for a number of spatio-temporal features between the subject and the

object/human. Fanello et al. [63] extend the classic form of HOG to encode global

representation. The Global Histogram of Oriented Gradients describes the appearance

of a depth map silhouette without splitting it into cells (or regions). The gradient of

the depth map image shows the highest response on the contours of the subject, thus

indicating the posture of the subject.

2.2.3 Skeleton-based Feature Extraction and Representation

The human body is an articulated system of rigid segments connected by joints, with

human motion being a continuous evolution of the spatial configuration. The study of

skeleton-based feature extraction and representation dates back to early work by Johans-

son [64]. This work demonstrated the ability to recognise a large set of actions solely

from the joint positions. The concept of joint positions has been explored extensively
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ever since. In contrast to depth map based approaches, the majority of skeleton-based

approaches model the temporal dynamics. One fundamental reason is the natural evolu-

tion of corresponding skeletons across time which can be used to model motion velocity

(chapter 3 introduces the main concepts of MoCap). There are three prominent ap-

proaches to obtain skeletons: marker-based MoCap systems, monocular or multi-view

colour images and depth maps [38, 54, 65, 66]. Overall, MoCap data is the cleanest

(the most noise free of the approaches) compared to other approaches. Yet, when using

multi-view frameworks (such as colour or monocular) they provide a more stable esti-

mated skeleton. Early works focused on testing algorithms against MoCap data, however

there has been a shift in recent works to test on noisy skeleton data obtained via depth

map images. This is due to a number of factors such as the simplicity in setting up the

system, usability and ability to be used in a large number of environments.

Figure 2.3: Three-dimensional joint estimation and extraction from single depth im-
ages ( c�IEEE 2012. Reprinted, with permission, from Shotton et al. [3]).

Of major importance, in 2011 Shotton et al. [24] (further discussed in [3]) proposed a

pose estimation and detection framework for extracting three-dimensional body joint
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locations from single depth map images. The authors take a depth map image of the

area in front of the range sensor and apply O↵set Joint Regression (OJR) algorithms

to automatically detect, segment using Beyond Pairwise Clustering (BPC) and locate

anatomical joints on the body of the user and predict the three-dimensional coordinate

location. A total of 20 three-dimensional joint positions are extracted, e.g. hip (left

and right), shoulder (left and right) and spine, an example of which can be observed in

Figure 2.3. The success of the tracking algorithms has resulted in the development of

the Microsoft Kinect sensor range, which o↵ers the ability to access skeletal data with

ease.

Lv and Nevatia [67] designed a set of spatially local features based on single joints,

or a combination of joints (that are linked in the hierarchical structure). The authors

introduce a framework that is capable of encoding features in real-time. Normalisation is

employed to avoid dependency on the environment, body orientation, pose size and view

point. Their work suggests that using just pose vectors may, in some cases, cause a loss of

some relevant information and reduce the discriminative power of the encoded features.

The authors consider three motion types that require motion from di↵erent primary body

parts (legs and torso, arm (left and right), head). This results in a high dimensional 141

vector, including the full pose and multiple feature types. To e�ciently represent each

feature and action class a Hidden Markov Model (HMM) [68] is constructed to model the

temporal dynamics. An ensemble of HMM are combined into a weak classifier, namely

AdaBoost [69] to improve the feature discriminative power. To support more complex

action sequences Xia et al. [70] proposed the Histogram of 3D Joint Locations (HOJ3D).

The HOJ3D encodes the spatial occupancy information relative to a pre-defined joint

(ideally hip centre or skeletal root). A modified spherical coordinate system (on the

pre-defined joint) partitions the three-dimensional space into n bins. Interestingly, to

handle scale invariance, the radial distance is not considered. However, this approaches

struggles when the participant is not directly facing the range sensor, or the tracking

algorithm is unable to robustly track a skeleton.

Briefly, the above methods are limited to single (or simple) gestures; this is due to a

failure to model the hierarchical motion evolution. To address this, Koppula et al. [71]

evaluated the interaction between a human and an object. The authors encode a Markov

Random Fields using a spatio-temporal sequences. They encode two types of nodes,

namely object nodes and sub-activity-nodes, and edges representing the relationship
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between an object and the human. The modelling of human motion in a hierarchical

structure allows for complex activities that include interaction with single and/or mul-

tiple objects. The basis of the work is to utilise a skeletal tracking algorithm to assess a

joint-by-joint interaction with objects in the scene. Other works such as [72] extend the

human-object interaction further by explicitly modelling the motion interaction between

the human and object using joint kinematics.

Recently, works have sought to combine depth map images and RGB data in the form of

point clouds. This approach is very new area of research, therefore only a few approaches

exist. Yang and Tian [73] introduced the EigenJoints features which are extracted from

RGB-D sequences. Posture (f
cc

), motion (f
cp

) and o↵set (f
ci

) features are extracted.

The posture and motion features encode the spatial and temporal configuration with

pairwise joint di↵erences within a single frame, and intra frame were computed. The

o↵set feature initial pose is neutral (and ‘clean’). Due to the high dimensionality of the

feature set, PCA is applied to remove irrelevant data and reduce noise to obtain the

EigenJoints descriptor.

2.3 Motion Capture: Datasets and Benchmarking

In the computer vision community there exist multiple datasets composed of di↵erent

modalities such as MoCap, RGB images and depth images. For human MoCap data

these are composed entirely of two modalities, namely marker-based systems such as

Vicon and marker-less systems such as Microsoft Kinect sensor. Marker-based systems

typically place retro-reflective markers on key anatomical joints (typically 40/50 mark-

ers) on a participants body, with infrared lights mounted around the room to capture the

motion. Orientation and angles are then extracted to represent human motion, section

3.1 discusses these theories in detail. It is important to acknowledge that there are other

forms of Vicon, such as instead of using markers colour stickers, however these have not

been utilised extensively by the Computer Science community. Marker-less systems rely

solely on pose estimation and skeletal extraction techniques. These systems use either

RGB or depth-map images to identify the body of interest and segment the body into

key anatomical areas. Skeletal tracking algorithms are applied to the points-of-interest

to extract MoCap data.
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Existing datasets (e.g. [74–76]) are vast in number and seek to address a specific area of

research (e.g. daily living, first person, and gesture). They are captured using marker-

based, marker-less or RGB systems, which can be defined into three main categories.

Firstly, those that are action recognition datasets such as marker-less G3D dataset

[5] which contain simple action sequences obtained in a controlled environment. Sec-

ondly, surveillance datasets such as RGB-based i-Lids dataset [77] which are obtained

in realistic environments such as airports and ports. The third type of movie datasets

are obtained from movie scenes such as RGB-based Hollywood2 [78]. This thesis is

exclusively interested in the first category, which are composed of marker-based and

marker-less systems. Selecting the most suitable dataset for benchmarking healthcare-

based algorithms is a challenge, as can be observed in the limited types of datasets

available, a discussion is presented hereafter.

2.3.1 Marker-based Datasets

Figure 2.4: An example of a participant walking. Extracted from the marker-based
Carnegie Mellon University Motion Capture Database [4].

Marker-based systems require markers to be placed on the participant at anatomically

significant locations. Using multiple cameras, these markers are tracked resulting in

Euler angles, rotations and orientations (otherwise referred to as MoCap data) that are
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relative to the camera coordinate system. There are numerous marker-based datasets

[79–82], which are typically aimed at benchmarking pose estimation, gesture, gaming and

security systems. Marker-based datasets are very challenging to construct and require

a vast amount of hardware and expertise.

One of the earliest publicly available MoCap datasets was developed by Sigal et al.

[83], who introduced the HumanEva dataset. It contained synchronised RGB video

and MoCap to support the development of new articulated motion and pose estimation

algorithms. Over 40,000 frames of data were collected at 60Hz, encompassing typical

every-day tasks including walking and drinking from a cup. This dataset has been

popular in comparing pose estimation techniques with a ground-truth (the MoCap data).

Van Der Aa et al. [84] further complimented this dataset with the introduction of the

UMPM benchmark dataset, a multi-person dataset which contains synchronised RGB

images and MoCap. The dataset focuses on human interaction, with the authors paying

particular attention to recording scenarios that involve human-to-human interaction,

and human-to-object interaction.

CMU Motion Capture dataset [4] is the most popular marker-based dataset in use for

benchmarking action recognition frameworks. It consists of a large amount of game-

orientated trials recorded at 120Hz in a lab-based setting. It includes 2600 trials across

23 action categories captured using a marker-based Vicon system. While the number

of trials and action categories are diverse, the set-up includes a rigid recording protocol

and participants are sourced from a young student population. The dataset has been

developed for gestures, actions and interactions in game-based scenarios. An example

of a visualised sequences can be observed in Figure 2.4.

To address the lack of diversity in action execution and variable environment, Müller

et al. [85] introduced the HDM05 dataset. The dataset contained a limited number of

realistic fitness workout trials (1,500) captured by five participants, captured using a

strict recording protocol. The dataset has been a popular for benchmarking activity

recognition frameworks.

To be more realistic to home-based environments, Tenorth et al. [86] introduced the

TUM Kitchen dataset which consists of multi-modality dataset including video and

MoCap. Participants were captured in multiple daily living scenarios performing specific
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tasks, with participants asked to perform motions as they would in the home with large

amounts of freedom given.

2.3.2 Marker-less Datasets

Figure 2.5: An example of a participant fighting. Extracted from the marker-less
G3D dataset [5]. Left: Standard definition RGB image. Middle: Depth map image,
with participant mask identified. Right: Extracted skeleton sequence consisting of 20

joints.

Recent technological advancements have led to the availability of low-cost and easy to

use image sensor technology (e.g. Microsoft Kinect 360/One, ASUS Xtion etc). These

systems are marker-less, where the human skeleton is extracted from depth map or

video sequences to provide orthogonal coordinates for specified anatomically significant

landmarks on the human body. Please refer to Section 2.2.3 where skeletal extraction

algorithms are introduced. Marker-less datasets are able to be construed with ease, and

require very little hardware and/or software expertise.

The first publicly available dataset constructed using the Microsoft Kinect 360 sensor

was by Wang et al. [18]. The MSRDailyActivity3D [18] consists of 10 participants

performing daily living activities such as eating or reading a book. The dataset includes

MoCap and synchronised depth map images. As is common in dataset construction, the

MSRDailyActivity dataset was captured using a rigid protocol to ensure uniformity in

action trials.

Building on the success of the MSRDailyActivity [18] dataset, Sung et al. [87] introduced

the CAD-60 dataset, which comprise of RGB-D image sequences of humans performing

activities which are recording using the Microsoft Kinect 360 sensor. The participants

were given great freedom in undertaking activities as they would in the home, with

di↵erence recording environments used, such as o�ce space, bedrooms and kitchen. The
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dataset features 60 short RGB-D image sequences, in five recording environments, in-

cluding 12 activities (e.g. talking on couch, relating, drinking water) by four participants.

To improve the diversity in actions obtained, Koppula et al. introduced the CAD-120

dataset [88]. As in [87], participants were given the freedom to perform actions as they

would in the home. This resulted in 120 RGB-D image sequences of four participants

undertaking complex long daily activities such as making cereal and removing plates

from a stack in a specific order.

While daily living activities are important, Bloom et al. [5] introduced the G3D [5]

dataset which provides image, depth and skeleton data captured using a Microsoft Kinect

360 sensor. The dataset contains a range of typical action sequences you would expect to

find in a game-based environment. A total of 200 trials across 20 categories (e.g. jump,

run and walk) using 10 participants were recorded in a controlled lab-based setting.

In addition, Fothergill et al. [76] introduced one of the largest dataset of its type,

MSRC-12 Kinect gesture dataset, which comprises of image, depth and skeleton data

captured using a Microsoft Kinect 360 sensor. The dataset consists of sequences of

human movements, and associate gestures used in gaming environments. The data set

includes 594 sequences and 719,359 frames that equates to approximately six hours and

40 minutes-collected from 30 people performing 12 gestures. The dataset is diverse in

nature, however it was record in a lab-based setting.

To handle other research domains, other marker-less datasets have been introduced.

To handle complex human activities and multi-human interaction, the authors of [5]

introduced the G3Di [89] dataset which captured 12 participants split into 6 pairs in

a multiplayer game setting. The dataset contains collaborative interactions, such as

volleyball, in which one player serves and the other has to hit the ball to return and

o↵ensive interactions in which one player has to punch while another has to defend.

Being able to re-identify a participant that has been observed previously is an inter-

esting research topic, to that end, Barbosa et al. [75] introduced the RGB-D person

re-identification dataset, which consists of walking movements captured using the Mi-

crosoft Kinect 360 sensor. Kwolek and Kepski [90] introduced the UR Fall Detection

dataset which comprises of participants falling and daily living activities. Two Microsoft

Kinect 360 sensors are employed with synchronised RGB, depth and MoCap extracted.
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2.4 Understanding and Analysis of Human Motion

The understanding of human motion, in terms of recognition, quantification and analysis

is an important area of computer vision [6–8]. The goal of understanding human motion

is to automatically analyse ongoing actions (and/or activities) from unknown video

sequences. In a simple case of one action execution, the objective is to correctly classify

it to an action category either by using a propriety framework or machine learning (e.g.

[17, 91]). Secondly, a system could seek to analyse the way in which the action was

undertaken, such as gait speed and body sway, enabling a greater understanding of the

motion kinematics.

This section follows broadly the taxonomy of Aggarwal and Ryoo [7] and will explicitly

focus on three-dimensional joint features represented as MoCap . It is structured as fol-

lows: Space-time and Sequential Approaches (Single-layered) are those approaches that

represent human actions and activities directly based on sequential data. Gestures and

Semantic Approaches (Hierarchical) are those that represent high-level human activities

by describing them in terms of other simpler representations, such as basic actions that

build a gesture.

2.4.1 Space-time and Sequential Approaches (Single-layered)

Space-time and Sequential Approaches represent human motion and activities directly

based on the sequential MoCap data itself. Such approaches consider the sequence as a

class of skeletal sequences, and perform recognition from an unknown number of MoCap

sequences. Various representation and matching methods have been proposed to enable

accurate decision-making as to whether a sequence belongs to a specific class, and/or

analysing the motion to enable better understanding [92–94].

A skeleton sequence is seen as a time sequential set of three-dimensional joints, therefore

an input sequence containing an execution of an action and/or activity can be repre-

sented as a three-dimensional space-time volume constructed by analysing the inter-

frame di↵erences. Masood et al. [95] made the assumption that the first frame of any

sequence is a neutral pose, then the authors’ take the di↵erence between the first frame

and each subsequent frame to generate an o↵set feature. A generalised framework has

been proposed by Yao et al. [94], where the skeleton motion is encoded by relational
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pose features [96]. The features encode the geometric relations between specific joints in

a single pose or a short time-ordered sequence of poses. The framework couples the task

of action classification and pose estimation uniformly and performs very well compared

against the benchmarks. Several works have sought to identify and group sets of joints

to enable joint-to-plane distance and motion evolution. Yun et al. [97] encoded a feature

that captures the geometric relationship between a joint and a specific plane which must

be spanned by three joints. The feature is designed to encode specific information such

as how far the right foot lies with respect to a frontal plane such as the left knee, hip and

upper torso. This approach is capable of identifying subtle di↵erences between actions.

Early work by Sheikh et al. [98] used trajectories to represent and classify actions.

The authors represented each action as a set of 13 trajectories in a 4-D XYZT space.

The authors used a�ne projection to obtain a normalised representation in order to

measure the view-invariant similarity between two sets of trajectories. This was further

complimented by Sung et al. [99] who computed each joint’s rotation matrix with respect

to a defined location on the torso, hand position with respect to the torso and joint

rotation motion as features and used a Maximum-Entropy Markov model, which is a

graphical model for sequence labelling that combines features of an HMM and maximum

entropy models to learn each action class.

However, others have sought to use simple skeleton features provided by skeleton track-

ing algorithms. Bhattacharya et al. [100] introduced a simple vocabulary approach for

gesture classification of MoCap using an Support Vector Machines (SVM). The authors

zero mean the skeletal sequence to normalise the sequence and train an SVM on MoCap

features. Classification is performed for each frame individually and an accumulative

voting strategy determines the winning class. Further, Piyathilaka and Kodagoda [101]

proposed a Gaussian mixture-based HMM to detect activities using MoCap data. To

infer human activities, the authors utilise the Gaussian mixture output of an HMM to

capture the relationship between joints in a sequence. Testing is undertaken o✏ine by

constructing a Gaussian mixture model for comparison against the trained model. The

authors note that the skeleton data itself is descriptive to be able to robustly detect

human action.

Using skeleton data as the core, Vieira et al. [102] used distance matrices as an invariant
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feature for classifying MoCap data. The authors rely on representing each MoCap se-

quence as distance matrices. Firstly, given two postures (skeletal frames) with the same

semantic structure may have di↵erent MoCap coordinates depending the body position,

orientation and viewpoint. An equivalence exists if there is a rigid transformation be-

tween two poses. As such, rigid transformations are grouped and used to identify each

action group . Then, an Action Graph is built based on a set of silent postures that are

represented as a distance matrix. Each group of silent posture is a node on the Graph.

A test sequence is compared to the Action Graph to determine the corresponding class.

Barnachon et al. [103] extended the concept of Action Graphs. The authors propose an

exemplar-based framework for encoded motion graphs from MoCap. MoCap is trans-

formed into a skeleton-centric coordinate system, with spatio-temporal characteristics

of each action modelled. Classification is undertaken by comparing Action Graphs of

the training with testing data.

Other recognition approaches have focused on analysing a set of features based on de-

ducing if an action has occurred if a specific characteristic has been observed. Utilising

three-dimensional joint features, these approaches analyse the MoCap to measure how

likely it is that the feature vector was produced by a specific action. If the likelihood

between the MoCap feature and action class is above a defined confidence value, a de-

cision is made. Utilising skeletal locations extracted using skeletal tracking algorithms,

joint orientation can be computed. Importantly, joint orientation is a useful feature as it

is invariant to human body size, and point of view. Sempena and Maulidevi [93] built a

feature vector from joint orientation along a sequential time series and applied Dynamic

Time Warping (DTW) on the features to enable human action recognition. Bloom et al.

[5] concatenated five di↵erent features: pairwise joint position di↵erence (otherwise re-

ferred to as o↵set), joint velocity, velocity magnitude, joint angle velocity with respect

to the x-y plane and x-z plane, and a three-dimensional joint angle between selected

joints. In total, a feature vector of 170 features was generated to enable recognition of

gaming actions.

There only exist a few approaches that have sought to identify the user based on the

pose. Sinha and Chakravarty [104] proposed a system that analysis the gait and balance

of the user for person identification. Unlike in other approaches, Sinha and Chakravarty

[104] extract a set of spatio-temporal dynamic and static features to describe each frame.

These features are grouped to form a template for each user, and an SVM is trained
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on each template. More recently, Kapsouras and Nikolaidis [105] introduced a k-means-

based framework which identify key action segments, with each segment encoded with

a frequency of occurrence histogram. The framework relies on the correct selection

of sequences to be modelled, with person identification performed by a bag-of-words

approach. However, the framework struggles when the complexity of the codebook

increases. These types of approaches have been utilised in industry in areas such as

security and gait analysis, for example Kastaniotis et al. [106] sought to recognise the

gender of the participant based on their gait style. The proposal struggles when a

participant intentionally alters their own gait, or copies another participants gait.

Thus far, this review has focused on action recognition frameworks that utilise marker-

based MoCap as an input. These frameworks have been shown to be useful, however

several works have sought to assess and evaluate the motion itself. There are many

alternatives to marker-based mocap, such as accelerometers, wearable technology and

force platforms [107–109]. However, due to its popularity, several works have sought to

assess the ability of the Microsoft Kinect 360/One for use in healthcare applications [27]..

Kargar et al. [110] utilised a depth sensor to automatically measure the physical mobility

of participants. The authors analyse and classify human gait in relation to the “Get-

up-and-Go-Test”. Two types of features are extracted from the MoCap data provided

by the sensor. The first type of feature is related to the human gait (e.g. number of

steps, duration of each step, and turning duration); whereas the second type describes

the anatomical configuration. The authors state that using these features provides a

descriptor for charactering physical mobility. To enable classification on the severity of

the gait imbalance, the authors implement an SVM.

Recently, several frameworks have been proposed to enable greater understanding of

human motion. These frameworks follow a similar structure. They first seek to identify

the human action, using action recognition frameworks, and then undertake quantitative

analysis on the motion to provide greater understanding [27, 111, 112]. Typically these

methods are utilised in the healthcare domain for clinical outcome measures. Dolatabadi

et al. [113] proposed a home-based system for assessing changes in gait and balance. The

authors utilise a Microsoft Kinect 360 sensor to observe gait recovery in a participant

that had undergone surgery. They found that they were able to track the gait and

changes of the participant over a number of weeks. This enabled the authors to make

clinical judgements based on the information extracted. Gonzalez et al. [114] proposed
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a solution for real-time balance estimation by deriving Centre-of-Mass (CoM) feature

from a Microsoft Kinect 360 sensor and a Wii Balance Board. The authors unite the

CoM and angular momentum to quality the stability of user. While this work presents a

novel solution to balance measurement, it has been tested on a limited population (two

users). Other approaches such as [15, 115, 116] have utilised virtual reality and gaming

systems to aid in motion analysis and understanding.

2.4.2 Gestures and Semantic Approaches (Hierarchical)

Gestures and Semantic Approaches seek to decompose maker-based and marker-less ac-

tion sequences into basic “building blocks”. These gestures are modelled to enable a

better understanding of each action sequences for use either in recognition or motion

analysis. Such approaches firstly decompose complex action sequence into individual

gestures (or key segments) and then seek to represent each gesture to construct a hier-

archical framework [22, 70, 117].

Early work by Liu et al. [118] introduced the content of a Motion Index Tree (MIT).

With the development of MoCap systems, the authors identified that there is a need

for a three-dimensional motion retrieval algorithm. The authors propose a method

of partitioning MoCap based on a hierarchical motion descriptor. The MIT serves as a

classifier to determine the tree index that contains similar motions based on the test case.

To achieve the partition, the Nearest Neighbour (NN) rule-based dynamic clustering

algorithm is adopted to detect the similarity between all samples and partition based

on a threshold criterion value.

Instead of direct concatenation of three-dimensional joint features, Xia et al. [70] cast

the joint positions into three-dimensional cone bins and built a histogram of three-

dimensional joint positions to represent each action class. Each bin represents a unique

aspect of an action sequence, enabling machine learning techniques to be more discrim-

inative in detecting the correct action sequence. The benefit of using a hierarchical

structure is that human motion can be considered as a combination of a set of sub-

actions over time. Reyes et al. [119] represent a human model based on a feature vector

which composed of 15 joints extracted from a three-dimensional human skeletal model.

In addition, the authors implement DTW and combine automatic feature weighting on

each joint to achieve real-time action recognition. Wang et al. [18] further introduced the
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local occupancy pattern, which models the relationship between the human body parts

and the environment surrounding the human. The authors define an actionlet as the

human action with linear combination of “basic block” gestures. Uniting the actionlet

and machine learning enables a robust method for recognition.

Raptis et al. [120] utilised a similar framework to that proposed by Liu et al. [118]. In

[120] the authors propose a framework to classify gestures in real-time using marker-less

technology. By transforming the three-dimensional skeleton into angular representa-

tions, view invariance and noisy data is handled more robustly. The authors generate

a gesture model, which is trained by a cascaded correlation-based classifier, and ex-

tend it to include DTW to evaluate di↵erences in motion classes. The core aspect of

the framework is a pairwise comparison between “trained frames” and “test frames”.

Pazhoumand-Dar et al. [121] introduced a low-level joint feature identification frame-

work. In [121], a discriminative approach to identifying and extracting joint movement

similarities is presented. The framework is capable of detecting single instance actions,

however, more complex action sequences, interactions with the environment and other

users fail to be recognised robustly.

Du et al. [122] is one of the first to propose a Deep Learning solution to the task of

recognising MoCap. Du et al. [122] decompose skeleton information provided by the

Kinect One into joint groups, based on key anatomical joint regions (left arm, right

arm, torso, left leg and right leg), to enable a more representative feature vector. The

authors advocate that decomposing the sequence into joint groups provides an in-depth

analysis of the motion. A hierarchical feed forward neural network is trained 8 layers

deep, with each layer representing a unique joint group composition. The framework

is capable of handling complex action sequences. However, due to the complexity of

the Deep Learning network, training and recognition latency are significantly higher

compared to other state-of-the-art approaches.

Han et al. [123] predicts the motion pattern between action classes within the manifold

subspace. This enables discrete modelling of the intra-/inter class di↵erence to facilitate

e�cient action recognition. Taylor et al. [19] proposed a modified conditional Restricted

Boltzmann Machine evaluated using a non-linear generative recognition approach. Of

great interest to this thesis, the authors use MoCap sequences that are parameterised in

Exponential Map form. The authors learn the local constraints and the global dynamics
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of each sequence to provide a descriptive element to allow for recognition. The approach

is able to capture complex non-linearities in the data and distinguish between di↵erent

motion styles, as well as the transition between action classes.

Several methods have sought to identify “key poses(s)”, which are the best pose(s) to

represent an action sequence in the fewest number of frames possible [92]. Early work by

González et al. [124] proposed a framework for automatic keyframing of human action for

use in computer animation. The authors propose an action model that is comprised of

key frames representing each action class. The authors build an eigenspace by employing

PCA. Each key frame is selected based on a temporal interpolation scheme. Each action

is represented by a temporal sequence of key frames. However, the authors acknowledge

that computation expense make the system unfeasible for real-world application. Bar-

nachon et al. [125] proposed utilising histogram of poses, extracted from MoCap which

were computed based on a weighted Hausdorf distance. The authors identify delegate

poses of an action sequence, which are selected manually. Then, a histogram is computed

based on the distance between the delegate poses and each pose in the sequence. To

enable real-time functionality the authors implement dynamic programming to enable

decomposition of action sequences. The authors were able to detect action sequences

with a high recognition rate.

Using the spatio-temporal relationship of skeleton poses Bloom et al. [117] proposed

a recognition framework based on clustering spatio-temporal manifolds. The authors

extract MoCap data and convert 13 joints into Euler angles for each frame, then each

action class is clustered using k-means. By using clustering techniques, the authors are

able to decompose a set of sequences into groups, typically corresponding to phases of a

motion sequence. A rank scheme is employed to select a peak pose for each cluster. These

peak poses form a template for each action class. An online framework utilising DTW

is employed to perform online recognition. The recognition results obtained are in line

with current state-of-the-art. Conversely, Thanh et al. [126] proposed to extract discrim-

inative patterns within action classes for use in classification. Given a MoCap sequence,

a Shape Histogram to represent the three-dimensional skeleton is formed to measure the

distribution of relative positions of neighbouring points. Using a self-similarity matrix,

the matrix is grouped and refined using a Conciseness Cost Matrix function to extract

key fames. For classification, the authors implement a confidence scheme to identify

(with confidence) to which class a test sequence belongs.
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There is a requirement to have a su�cient number of training samples in order to

represent each action e↵ectively [7]. Several works have focused on extending key poses to

encapsulate the exemplar paradigm to model action/activities using a limited number of

samples. Elgammal et al. [21] sought to capture the dynamics of gestures in an exemplar-

based recognition system. The approach is based on representing each motion as a

sequence of key exemplars. The key exemplars were selected based on a non-parametric

estimation framework. A probabilistic framework is employed for matching sequences

with the exemplar set. By utilising this type of approach, the authors have been able to

model complex gesture sequences using a limited number of samples. In their most recent

work, Barnachon et al. [22] extend the framework in Barnachon et al. [125] to propose the

integral histogram approach by representing action sequences with either one or three

exemplars. They extended the concept of integral histograms in the spatial domain

by clustering action sequences to generate pose similarity. This method decomposes

each cycle of a repetitive action sequence into histogram bins. For recognition, they

decompose a continuous action sequence of poses into integral histograms based on

DTW to compute a confidence score based on distance.

There are relatively few approaches that seek to unite classification and replacedquan-

tifyquantification analysis of human motion in a hierarchical context. Cary et al. [127]

proposed a system to unite the Microsoft Kinect for xBox 360 and Artificial Neural Net-

works (ANN) to aide in classification for physiotherapy assessment. The authors design

a feature vector based on grouping of joints. The first group is composed of the torso

joints (defined as joints of the spine, and neck); with the second group the remaining

joints (defined as the outer joints such as hands and feet);. The feature vector is com-

puted by extracting the associated angles between the groupings. The work employs

a multi-level ANN that decomposes each limb into a separate model. This allows the

authors to recognise complex action sequences and assess their correctness in relation to

a predefined model.

There has been a shift towards utilising depth sensor technology for measuring movement

in people with disease [16]. Predominately, Wang et al. [14] proposed a system for

monitoring muscular-skeletal disorders with a single depth sensor. The authors introduce

the Temporal Alignment Spatial Summarization method to decouple the complex spatio-

temporal information. The framework detects and extracts Action Units which represent

the di↵erent phases of human action (e.g. chair rise, one repetition). Then multiple
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measurements are extracted from the skeleton to provide an indicator for well-being

and health leading to clinical outcome measures. Amini Maghsoud Bigy et al. [128]

introduced a framework to assess gait movement in patients that have been diagnosed

with Parkinson’s disease. The work proposes a framework to detect tremors and motions

that are typical of a falling motion. The features proposed are gait-based features that

are capable of providing discriminative representation of the motion being observed.

2.5 Discussion and Conclusions

This chapter has given a brief overview of the state-of-the-art in the field of feature

extraction, feature representation and human motion analysis. In keeping with other

reviews [6, 7, 9], there are clear advantages to uniting complementary algorithms and

techniques for application in human motion analysis. For example, combining human

action recognition with motion analysis to provide intervention analysis of human mo-

bility for use in a clinical context. Furthermore, a novel area of contribution has been

identified: the combination of feature representation, classification and motion analysis

within a single framework for the context of health. In the remainder of this thesis three

approaches for achieving this are explored: (i) the representation of MoCap data that

is view-invariant, accommodates action dissimilarity and anthropometric variations; (ii)

the ability to classify action sequences robustly in a real-time environment; (iii) extrac-

tion of relevant features to support clinical outcome measures. This chapter concludes

by briefly reviewing each of the taxonomies that have been highlighted and discussing

their relevance to this thesis.

2.5.1 Feature Extraction and Representation

Local and global approaches to extraction and representation of RGB images have proven

to yield good results in identifying the human pose, and can be extracted with relatively

low cost [6]. These types of approaches are typically limited to a single view-point,

which have limited their applicability [28, 33, 52]. Yet, increasing the number of view

points (cameras) such as in [31–33] goes some way in solving this issue but at the cost of

increasing algorithm complexity and computation. The early work of Bobick and Davis

[28] in which the silhouette of the human subject is extracted, discussed in Section 2.2.1
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is fundamental to these types of approaches. Current algorithms using silhouettes are

suitable for single person action recognition and perform best on single-layered motion

sequences. There is di�culty in recognising complex activities due to the information

lost either when computing projections or when stacking information along the temporal

domain. Occlusion and noise can distort the silhouettes drastically. Importantly, many

approaches that utilise RGB images assume that the video is readily segmented into

sequences that contain at most one instance of an action and can be undertaken o✏ine.

Often, the human figure mask can be readily extracted from scenarios favourable to

algorithm design. While several works (e.g. [40, 49, 54]) have addressed this issue,

it remains a challenge to perform direct detection for online applications. This is an

important research topic that is receiving much attention, however this thesis will not

focus on this area, nor will any contribution be made.

The use of RGB images, while still relevant, has somewhat been overshadowed by the

introduction of low-cost RGB-D sensors which enable easy access to three-dimensional

data to compliment traditional RGB data. Acquiring three-dimensional data from depth

sensors is more convenient than pose estimation from RGB or using motion capture

systems. The approach of Bobick and Davis [28], which introduced the intensity image

could aid in partially recovering information that is typically lost from three-dimensional

to two-dimensional projections. However, designing both e↵ective and e�cient depth

extraction and representations for human pose and classification is a di�cult task. First

of all, depth sequences may contain serious occlusions, which makes the global features

unstable. In addition, depth maps do not have as much texture as RGB images do,

and they are usually too noisy (both spatially and temporal) to apply local di↵erential

operators such as gradients on. Yet, the community is actively developing algorithms to

combat these issues, as in [56].

The approaches of Shotton et al. [24] (further discussed in [3]) and Koppula et al. [71]

discussed in Section 2.2.3 seek to extract three-dimensional motion capture representa-

tions for anatomical landmarks on the human body. These types of approaches have

allowed the community to focus on the motion being performed, and not focus on ex-

tracting meaningful data points. In this thesis, motion capture data extracted from a

depth sensor using the skeleton tracking algorithm of [24] is extensively utilised. This

algorithm is incorporated into the Kinect 360/One sensor, which is a low-cost portable

device ideal for utilisation in the clinical domain.
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2.5.2 MoCap Datasets

Existing datasets have been created for benchmarking specific research domains, for

example Kwolek and Kepski’s [90] objective is to aid in detecting participants who fall;

whereas Bloom et al. [5] provides gaming-based actions to aid research in improving

action recognition for entertainment. Extending this further, by placing anatomically

significant markers (e.g. [83]) on the human body could limit the range of motion and

impair the result. Existing datasets lack the clinical support and validity required to

answer the objectives of this thesis. For example, gait analysis requires an algorithm that

can deal with a range of measurements such as angles, stride length and foot positioning.

Using a game or gesture oriented dataset may not arrive at a reliable, clinically objective

benchmark result.

Datasets have been proposed to solve specific tasks and early work introduced the

marker-based systems which require expensive hardware and software expertise. It is not

possible to extract sophisticated recording environments due to hardware requirements.

As a consequence, rigid recording protocol, which restrict the participant to a defined

motion zone, limting their ability to express the motion as they may otherwise would

have, as seen in Sigal et al. [83] and Van Der Aa et al. [84] have resulted in similar dataset

being obtain. Further, rigid protocols can limit the type of motion the participant is

performing, and alter their typical motion pattern - resulting in poor representation. As

mentioned previously, hardware constraints limit the environments in which data can be

collected. For example, recording in a local General Practitioner O�ce is not possible

to due the time required to place markers on the human body and calibrate them. A

key objective of any dataset should be its ability to represent the norm, therefore out in

the wild data capture is important.

Datasets such as CMU Motion Capture dataset [4], HDM05 dataset [85] and TUM

dataset [86] were never intended for use in benchmarking healthcare-based applications.

Without clinical support it is di↵erent to reliable benchmark algorithms with a high

degree of accuracy; an aspect which is highly sought after by the medical community.

The introduction of the MSRDailyActivity3D [18] dataset started a recent trend in

generating and publishing datasets for specific tasks - however they are all similar in

nature and scope. The G3D [5] (later complemented with G3Di [89]) contain action
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categories which are similar to [4] and leave little scope for benchmarking of healthcare-

based algorithms. To further complicate matters, the actions undertaken provide little

clinical scope, and are either captured using a rigid protocol [5, 75] or a very loose

protocol [18] making it di�cult to extract quantitative judgements. It is important

that a clinically supported dataset be introduced to the community to aid in clinical

assessment, quantification, analysis and clinical validation.

2.5.3 Understanding Human Motion

The ability to understand human motion is applicable in many domains, such as health-

care, gaming and security [14, 104, 117]. Extracting human motion features, such as

mocap it is possible to classify the action and provide supportive clinical outcomes (as

discussed briefly in Section 2.4). This section has exclusively discussed methodologies

and frameworks that utilise three-dimensional motion capture information. The execu-

tion and performance of any action by two participants can result in a varying number of

frames. To overcome this, techniques have been proposed to use the temporal domain to

align these two sequences. The vast majority of existing algorithms solve this problem

through temporal modelling, which models the temporal evolution of di↵erent action

sequences. For example, the HMM has been widely used to model the temporal evolu-

tions [70]. Further, Bloom et al. [117] predicts the motion pattern between action classes

within the manifold subspace. Finally, DTW utilised by Müller and Roöder [129] com-

puted the optimal alignment between motion templates composed of three-dimensional

joints. However, each of the methods mentioned previously have been obtained utilising

marker-based MoCap Vicon systems. The introduction of the skeleton tracker by Shot-

ton et al. [24] (further discussed in [3]) may undermine the performance of these models

and result in a modelling of the noise rather than the action sequence.

The main body of work for understanding human motion is for action recognition/clas-

sification. Achieving a reliable algorithm that can operate for complex action sequences

(such as gymnastic) is an active research topic. Barnachon et al. [22] goes some way in

addressing this issue by encoding an integral histogram with “sub-actions” that are key

to an action overall. Yet, the algorithm is vulnerable to noise. Latency is an important

factor, [18, 22, 119] presents a low-latency online recognition system, which process the
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input without considering temporal alignment. This type of system is in high demand

for applications in gaming and healthcare.

Human action recognition/classification is only part of the “Understanding Human Mo-

tion” aspect, several works have sought to unite classification with clinical frameworks

for aid in the decision-making process for healthcare application. With the aim of pro-

viding more information to the clinician to allow for an informed decision pertaining to

the well-being of the participant. Most notably, Wang et al. [14] developed a frame-

work for assessing those with Parkinson’s disease. However, the framework provides

only basic clinical outcome measures, making it di�cult to draw objective conclusions.

A framework to provide objective outcome measures is desirable and missing from the

current literature.

Whilst noise and occlusion are problematic in all types of data, they present an ever

greater problem in markerless tracking. In the literature, data noise and occlusion for

a home-based setting have not been taken into account. Finally, further refinement

for analysing human motion to obtain outcome measures is required to allow objective

decision-making.



Chapter 3

Theory and Techniques

This chapter describes each of the component techniques that are brought together to

define the frameworks proposed in later chapters. These consist of feature descriptors

for representing the human body and for ambient projection of high-dimensional data.

A number of di↵erent classifiers are introduced for use throughout this thesis.

In the remainder of this thesis a number of techniques are introduced to address the

problem statement defined in chapter 1. These are all based around a body representa-

tion, classification and an analysis framework that provides classification and outcome

measures that provide detailed analysis of human motion . Uniting these approaches

into a single unified framework leads to a novel streamlined framework that provides

three-dimensional marker-less human action classification and motion analysis using de-

scriptive representations. In this chapter the methods used to construct the feature

descriptors, body representation (Section 3.1) and classification (Section 3.2) which are

used in later chapters are reviewed and discussed.

3.1 Feature Descriptors and Body Representation

This section introduces the key techniques for feature descriptor and body representa-

tion that are brought together to define the framework in later chapters. This section

will introduce the theory and issues of mathematically modelling spatial rotations and

rigid body orientations in the physical world (Section 3.1.3) (three dimensional space of

35
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yaw, pitch and roll ), grouping semantically similar human body poses (Section 3.1.7)

and grouping and projection of high-dimensional motions into a “latent” pose space

(Section 3.1.8).

Human motion is highly complex, with subtle variations between di↵erent participants.

There are many ways to represent the motion over time, that are mathematically, com-

putationally and practical. This section provides a background of spatial rotations from

first principles by introducing Euler’s theorem of rotation in relation to the human

body. Then four popular rotation representations are presented and discussed. These

are: Euler Angles, Coordinate Matrix, Axis-Angle, and Exponential Map. The first

three representations are introduced and compared from a mathematical and computa-

tional point of view. Each representation approach will be utilised in this thesis to solve

a particular problem. Particular attention will focus on distance metrics, computational

speed and discriminatory power. Finally, a generalised articulated skeletal model and

notation is introduced.

Briefly, there are subtle di↵erences between rotations and orientations. It is important

for the reader to be aware of these.

A rotation is the action of transforming one vector into another vector. A rotation

preserves the magnitude of a vector and preserves the handedness of the space (it ob-

serves the direction of the cross product between base vectors). All rotations obtained

in three-dimensional space have three degrees-of-freedom (DOF), therefore we can imply

that they need at least three features to define them.

An orientation is the viewpoint of a rigid body in any given space. Confusion is observed

between these two terms, because orientations are usually (not always) represented as a

rotation with respect to a fixed, known coordinate or relative point. Figure 3.1 demon-

strates a rigid body represented in a local coordinate system (dx, dy and dz), which is

measured against a fixed global coordinate system (x, y and z). It is important to be

aware that in this case, displacement implies action (otherwise referred to as angular

displacement). For the purpose of this thesis, we ignore the translational component

and focus on rotation component, unless stated otherwise.
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Figure 3.1: A global coordinate system which represents the orientation of the body
with respect to a known world coordinate system of the sensor device. Example 1: The
coordinate system of the body with respect to the Kinect device (x, y, and z). Example

2: Localising the coordinate system to the body (dx, dy, and dz).

3.1.1 Articulated Skeletal Model: Terminology

Rigid skeleton models of the subject are typical in any development framework that

utilises MoCap. A skeletal model consists of a hierarchy of rigid bones which are con-

nected together by joints (as demonstrated in Figure 3.2). Bones are rigid bodies as

they cannot change or bend - therefore they can be described in length. It is important

to be aware that for marker-less technology, bone lengths can sometimes vary due to

noise, occlusion and poor skeletal tracking. Conversely, varying bone lengths could indi-

cate potential noisy outlier data which can be e�ciently managed [104]. Joints connect

bones together and allow them to move with respect to each other (this is denoted as

w.r.t), either rotationally or translationally. For marker-based systems, joints have an

attachment point on the bone to which they connect between one and three rotational

DOFs. For marker-less-based systems, joints are represented by between one and three

orthogonal DOFs in respect to a fixed coordinate world system. For clarity, di↵erent

frameworks, both marker-based and marker-less represent di↵erent types of rotational

joints. In this work, 1 DOF represents a hinge joint, 2 DOFs is a universal joint and 3

DOFs are ball-and-socket joints.

When manipulating the motion of a skeleton, either that obtained by a marker-based

or marker-less system, it may be useful to determine the root motion direction. As



Chapter 3. Theory and Techniques 38

Figure 3.2: A figure representing the skeleton structure extracted from the Kinect
One. A total of 25 tracked joints using the algorithm presented in [3].

mentioned briefly, a rigid body means that the distance between any two joints should

remain the same irrespective of any motion or force placed upon the body. Formally,

this means for any two joint positions x = [pj
t

x, pj
t

y, pj
t

z] and y = [pj
t

x, pj
t

y, pj
t

z] are:

||x
t

� y
t

|| = x(0)� y(0) = c (3.1)

where c is a constant value.

In dealing with motion capture data, it is important to allow joints and segments of

the body to rotate relative to each other but still maintain as a rigid body. This thesis

represents the body as a kinematic chain. All translations are performed in world coor-

dinate space and applied to the entire rigid body. The subject has specific orientation,

rotation and translation in a world space w.r.t to a fixed position. The skeleton of a

subject, denoted as P , is represented as a tuple of joint represents (e.g. Euler Angle,

Axis-Angle), denoted as pj
t

= {x, y, z}j=1:J
t=1:T . This thesis will refer to each pose at any

given time as p
t

, a set of poses as P and a specific joint at time t as pj
t

. Note that

P and p
t

are functions of time. An important decision for chain representation is how

to parameterise the joints. Numerous parameterisations exist and have been discussed

previously in this thesis.
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3.1.2 Background: Euler’s Theorem and Distance Matrices

The basic principle of rigid body orientation is Euler’s Theorem (Figure 3.3). Euler’s

Theorem can be succinctly define as follows:

Euler’s Theorem: Every angular displacement (or orientation) of a rigid body

can be described as some angle ✓ about three mutually orthogonal coordinate

axis fixed in space.

Figure 3.3: Euler’s Theorem: Any angular displacement of any rigid body can be
described as a rotation about a fixed axis (e.g. x) by an angle ✓.

Providing context to human motion, Euler’s Theorem suggests that if you grab a tennis

ball, which is at some orientation in space, and rotate the tennis ball to some other

orientation, there will always exist a fixed axis that can be rotated around in order to

get a specific orientation, where magnitude is the angle. Therefore, taking this example

we can state that case as: the axis will indicate which way to rotate an object and the

angle indicates how far.

Interestingly, Euler’s Theorem postulates the angle that directly provides us with an

indicator of a distance metric on rotations, and therefore orientations. Thus, we are

able to determine the distance between two orientations by using the angle of rotation

between two orientations. This angle is easier to compute in some representations, and

is motivation for the quaternion approach. It is easy to see why human motion, in terms

of MoCap is represented in this way.

To conclude, Euler’s Theorem denotes that spatial rotation have three degrees-of-freedom

- two to specify the axis and one for the angle. Therefore, the “minimum” number of

expected parameters to describe a rotation is three.
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3.1.3 Euler Angles

The most common way to represent a rotation in MoCap systems is to represent it into

three sequential rotations around principal orthogonal axes (namely x, y and z other

known as yaw, pitch and roll) and represent the rotation as triple ( ✓3 or ✓
x

, ✓
y

and

✓
z

), with each being around a particular axis (Figure 3.3). This is based on the fact,

that in this thesis, the rotation has three DOF, therefore the three angles are capable

of describing a rotation. This can be expressed in principal rotation matrices as:

X =

2

6666664

1 0 0 0

0 cos ✓
x

sin ✓
x

0

0 sin ✓
x

cos ✓
x

0

0 0 0 1

3

7777775

Y =

2

6666664

cos ✓
y

0 � sin ✓
y

0

0 1 0 0

sin ✓
y

0 cos ✓
y

0

0 0 0 1

3

7777775
(3.2)

Z =

2

6666664

cos ✓
z

sin ✓
z

0 0

� sin ✓
z

cos ✓
z

0 0

0 0 1 0

0 0 0 1

3

7777775

A transpose will be present if a row vector basis is used. It is important to note that

Euler Angles are di↵erent to what was proposed in Euler’s Theorem (although in the 2D

case they are the same, in three-dimensional this isn’t the case). General rotation can

be done by composing rotation over axis. For example, a rotation matrix R(✓
x

, ✓
y

, ✓
z

)

in respect to a joint angle (e.g. extracted from a MoCap system) ✓
x

, ✓
y

, ✓
z

is represented

as:
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R(✓
x

, ✓
y

, ✓
z

) = R
x

·R
y

·R
z

=

2
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x
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z
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x

S
y

S
z

� S
x

C
z

C
x

C
y

0

0 0 0 1

3

7777775
(3.3)

where S
i

= sin(✓
i

) and C
i

= cos(✓
i

). Also note that using matrix multiplication and the

order is important (e.g. R
x

·R
y

·R
z

6= R
y

·R
x

·R
z

). In a MoCap system setup, the

rotations are assumed to be relative to a fixed world axis initially and then projected

into a locally relevant axis of the human skeleton. For example, any orientation (and

therefore rotation) can be specified by yaw (e.g. around the thumb on the right hand),

pitch ( e.g. around the middle finger on the right hand) and roll (e.g. around the middle

finger of the right hand).

Euler Angles are a compact, three vector method of representation, for example a motion

curve can be extracted and visualised with relative ease. In addition a benefit of Euler

Angles is that angles are used to provide direct meaning, with no normalisation required

and the angles are invariant to participants. Conversely, drawbacks exist with gimbal

lock, singularities and discontinuity.

Gimbal lock: This is a coordinate singularity when two axes e↵ectively line up, result-

ing in a temporary loss of a degree-of-freedom. This, albeit temporally, results in two

angle vectors, e.g. ✓1 and ✓3, become associated with the same degree-of-freedom.

Singularities and Discontinuity: Euler Angles, contain three vectors which can cause

a singularity - with a degree-of-freedom being lost during certain rotations. In addition,

when an angle passes from 2⇡ to 0, the components are within a circle space and not

vector space and cause discontinuity in the data - making it very troublesome to model.

3.1.4 Coordinate Matrix

A group of rotations of Euclidean 3-space (R3) is usually denoted as SO(3), which is

defined as a group of special orthogonal 3 by 3 matrices. In the literature it is also

referred to as a Rotation Matrix. An orthogonal matrix consists of orthogonal row

and column vector which are of unit magnitude. The orthogonal matrices, called O(3)



Chapter 3. Theory and Techniques 42

is represented by two subgroup determinant (value associated with a square matrix -

represented as det), det = +1 and det = �1. The subgroup represented by negative

determinant (det = �1) are reflections as they are capable of changing axis of space.

The positive subgroup, represented by determinant (det = +1) are special orthogonal

matrices, as each matrices R 2 SO(3) will project a column vector to a new column

vector x 2 R3 as:

y = Rx (3.4)

by rotating and retaining its magnitude.

It is possible to extract a coordinate matrix for any given rotated space provided the

original system is known. This is given as:

R =

2

6664

| | |

x̂
new

ŷ
new

ẑ
new

| | |

3

7775
(3.5)

where a vector from an unrotated basis space (e.g. x, y and z) into a new space defined

by the column vectors. For example, Figure 3.1, the orientation is defined by the global

coordinate system of the Microsoft Kinect (360/One) sensor, and the hip center will serve

as our basis. Therefore, a coordinate transformation, columns-wise, can be undertaken.

Taking into account Euler’s Theorem, the axis of rotation of a matrix is the eigenvec-

tors. An eigenvector of a transformation is scaled by the transformation. Explicitly in

this case, the rotation is a set of points that do not move under rotation, which thus

determines a fixed axis of rotation. The remaining two eigenvectors will be complex

in nature (thus also have complex eigenvalues). They are important as they describe

a plane orthogonal to the axis of rotation. An angle can then be computed by finding

the angle between the original and result vectors using a dot product and inverse cosine

(arcos). Mathematically, the matrix representation is used to define rotations - SO(3)

is the group we seek to represent. Matrices in this form map 1-to-1 with the angular

displacement of rigid bodies (further discussed in Section 3.1.1).



Chapter 3. Theory and Techniques 43

Unfortunately, problems arise when using coordinate matrices. Firstly, it requires 9

parameters to represent the structure of only three DOF. Therefore, six constraints are

enforced to remove extra DOF. If computational time is an important factor, this type

of representation is ine�cient. Secondly, as found with other representations, when

rotations are concatenated (numerically) precision and round-o↵ errors occur, causing

minor di↵erences from the special orthogonal, which introduces shearing and scaling

issues. Finally, these types of representations are very di�cult to visualise, in terms of

the MoCap sequences they represent, since the axis is an eigenvector.

3.1.5 Axis-Angle

It is possible to represent an SO(3), which is a rotation in three-dimensional Euclidean

space as a pair of vectors (unit vector ê indicating the direction of the axis rotation, and

an angle ✓ representing the magnitude of rotation about the axis), as observed in Figure

3.4. This is called an axis-angle or sometimes referred to as a Euler axis. This form of

representation is commonly used in marker-less based MoCap systems due to a lack of

a rigid body form.

Figure 3.4: A visualisation of a rotation represented by a Euler Axis Angle.

To compose a rotation in this form is computationally expensive, as an intermediate

step, such as a coordinate matrix is required. However, the representation does lend its

self to Euler‘s Theorem, meaning we can use the rotation between two orientations as

the metric.
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3.1.6 Exponential Map

In computer vision, the Exponential Map is a generalisation of the exponential function

of a matrix. It is based on generating a manifold which encodes the geometric features

on which to estimate trajectories, for human motion joint-based trajectories [130]. A

benefit, as will be demonstrated further, is that exponential maps are relatively easy to

compute and stable to gimbal lock.

The Exponential Map maps a vector in R3 describing the axis and magnitude of a three

degrees-of-freedom rotation to a corresponding rotation [130]. It is possible to compute

an Exponential Map in di↵erent ways, however in this thesis the proposal by Grassia

[130] is adopted due to its simplicity and popularity in the community. To formulate

an exponential map from R3, a set of real numbers corresponding to a rotation, to a

higher-dimensional analogue glome representation, S3 which is given as:

exp(p) =

8
<

:
[0, 0, 0, 1]T if p = 0;

Pinf
m=0(

1
2 p̃

m) = [sin(12✓)p̂, cos(12✓)]
T if p 6= 0.

9
=

; (3.6)

where p is the pose (in R), ✓ = |p| and p̂/|p| to provide the representation of a single

three-dimensional Euler angle Exponential Map form.

A set of transformed poses is denoted as P̄. The above equation maps p to the union

quaternion representing a rotation of ✓ about p (or p = [✓
x

, ✓
y

, ✓
z

]). The use of an

Exponential Map encodes both the magnitude and axis rotation into a single three-

dimensional vector. The formula demonstrates that by parameterising an axis/angle

rotation in three Euclidean parameters is acceptable. However, there are still outstand-

ing limitations with this method. It is clear from the equation above that exponential

maps must have singularities (p 7! 0). These are located on the glome (in R3) of a radius

2n⇡. This is because any rotation of 2⇡ about any axis is equivalent to no rotation at

all as the rotation maps back on itself.
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3.1.7 Human Motion Segmentation and Similarity Grouping

The need to group unlabelled data, otherwise referred to as clustering, arises in many

di↵erent applications, such as data mining and knowledge discovery [131], pattern recog-

nition [132] and health [133]. The object of any clustering approach is to determine “sen-

sible” groups (clusters) formed by analysing available patterns in the data to extract

information relating to similarity and dissimilarity.

A basic definition of clustering is as follows. Given a set of data vectorsX = {x1, . . . , xn},

the task is to group them such that “more similar” vectors are in the same cluster and

“less similar” vectors are in di↵erent clusters. A set, typically denoted as R, containing

these clusters is called a clustering of X. Consider a motion sequence, such as walking,

formed by a group of poses. Employing clustering it is possible to group each walking

phase (gait cycle), based on each stride, therefore the strides are identified as unique

groups. This section will explore k-means clustering [61], which has been selected due

to its popularity and high accurate rate and use in clustering di↵erent data types.

3.1.7.1 k-means clustering

Figure 3.5: An example of k-means being utilised on MoCap data. Observe the ability
of k-means to identify the typical phases of an action sequence. a) Chair rise clustered

into unique phases. b) Walking forward clustered into unique phases.
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The k-means clustering [61] rational is relatively simple. The algorithm assumes that

the number of clusters, k, is known. Its objective is to move cluster representative

centroid of each k cluster into regions that are dense points of data X. The k-means

[61] algorithm is iterative in nature. In general, k-means is defined as follows. Consider

n data points x
i

, i = 1, . . . , n which need to be partitioned into k . The objective is to

assign a cluster to each data point, where the aim is to find positions µ
i

, i = 1, . . . , k

of the cluster which minimises the distance from the data points to the cluster centroid

location. At each iteration t:

• The centroid initialisation for each cluster: µ
i

= value, i = 1, . . . , k.

• The closest cluster for each data point is assigned: c
i

= {j : d(x
j

, µ
i

)  d(x
j

, µ
i

), l 6=

i, j = 1, . . . , n}.

• Each cluster position is set to the mean of all data points within the cluster:

µ
i

1
|ci|
P

j2i xj , 8i.

• Repeat until convergence.

The algorithm is capable of clustering highly complex data representation. An example

of clustering MoCap sequences can be observed in Figure 3.5. k-means is suitable for

unravelling compact cluster [132, 134], the algorithm is considered to be fast, as it is

based on a iterative processes, which only requires a few passes through the data until

it achieves full convergence. This enables k-means to perform robustly when processing

complex and large datasets. However, k-means has several drawbacks that have yet to

be addressed by the community. k-means cannot guarantee convergence to the global

minimum, which, mathematically it can be assumed would represent the best possible

clustering distribution. The algorithm returns the cluster corresponding to the local

minima. Thus, di↵erent initialisation of centroid locations, on di↵erent machines may

lead to di↵erent cluster groupings . Further, the algorithm is very sensitive to outliers

and “noisy” data. Because each point is assigned a cluster, outliers will influence the

centroid mean location. Finally, accurate estimation of the number of k clusters is vital

for the success of the algorithm. However, it is not a trivial task. The following section

discusses a method for selecting the optimum k.
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3.1.7.2 The k problem - optimum number of clusters

The number of clusters should match the data. An incorrect choice could result in an

invalid cluster distribution that does not represent the data itself. More specifically, if

a large number of clusters are used, it is likely that at least one cluster will be split

into two or more, all containing very similar poses - which generally lies between sparse

regions in-between those clusters. k-means is robust for unravelling compact sequences,

such as MoCap, where accurate estimation of the number of clusters is crucial. There

is no single solution to estimating the optimum k value, with several works selecting

k manually (e.g. [22, 135]) or using automatic selection methods (e.g. [136–138]). In

this work, the Elbow method [138] is extended to represent the within-cluster-sum-of-

squares (WCSS) via the gap statistic proposed by Tibshirani et al. [134] (please refer

to [134] for in-depth algorithm presentation). This method enables automatic selection

of the k which is free from human bias.

Figure 3.6: A visual demonstration of selecting the most suitable k. With the green
line indicting the optimum k. With MoCap as input.

To determine the optimal k, an iterative process is undertaken which is described as

follows: k-means is performed n times, where n =
p
T/2, k is increased for each iteration

by a value of one e.g. k = 2, 3, . . . , n. For each iteration (of increasing k), within-cluster-

sum-of-squares is minimised. This is defined as the sum of the distance between each

pose and its assigned cluster centroid. This allows for a numerical value to represent the

compactness of each cluster. After n iterations a set of W = {w1, . . . , wn

} scores are

computed. The within-cluster-sum-of-squares for each iteration are averaged to provide
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a single unit value. The suitable k value is the log(w
i

) index which falls farthest below

a reference curve, defined as:

G
t

(k) = E⇤
T

{log(w
i

)}� log(w
i

) (3.7)

where E⇤
T

denotes expectation under the sample size of T from the original sequence.

The optimum k is the value maximising G
t

(k) after taking the original distribution into

account, an example of optimum k is shown in Figure 3.6.

3.1.8 Pose State Space

Assuming that a rigid skeleton is fully specified (and not inferred) at time t by a high-

dimensional “ambient” joint series pj
t

= {xj
t

, yj
t

, zj
t

}j=1:J
t=1:T , it is assumed that the coor-

dinate system is shared (Figure 3.7 provides a visual example of the motion signals).

However, when a feature vector is large, such as with MoCap, an alternative, more infor-

mative solution is desired to recover a low-dimensional “ambient” encoding of (or a part

of) the original pose state space (Figure 3.8 demonstrates the “ambient” representation

). As mentioned in Section 3.1, a number of di↵erent options exist for parameterisation

of such as Euler Angles, Axis-Angles and Exponential Maps. The data projection to a

latent pose space reduces the amount of redundant information to provide a meaningful

and manageable representation. A mapping from the latent space to the original pose

state space exists and enables the parameterisation of the rigid skeleton for objective

function evaluation. In this section notation for the rigid skeleton is introduced and the

technique for recovery of the associated latent pose space from MoCap data is presented

(please refer to Section 2.3 for an introduction to MoCap datasets and data).

3.1.8.1 Principle Component Analysis

Principle Component Analysis (PCA) is used to decompose the variation in a set of X

pose vectors, X = {x1, . . . , xn}. The mean x̄ and a covariance matrix S
i

are calculated

and Eigen decomposition is used to compute the l eigenvalues and eigenvectors, �
i

of S.

PCA technique is defined as follows:
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Figure 3.7: High dimensional MoCap pose vector visualisation: a left) CMU Walk ;
a right) Kinect Walk ; b left) CMU Jump; b right) Kinect Jump. Vertical red lines

denote singularities of bad MoCap data.

1. Estimation of X into a covariance matrix S. The mean x̄ is subtracted.

2. Eigendecomposition of S and compute the l eigenvalues and eigenvectors,

�
i

(where i = 0, 2, . . . , l � 1).

3. Eigenvalues are arranged in descending order, �0 � �1 · · ·�
l�1.

4. Selection of the number of eigenvalues to retain. A user defined parameter.

These are known as the principal components.

5. Transform each l-dimensional vector x in the original “ambient” pose space

to an m-dimensional “latent” vector space sy via the transformation of

y = ST . Such as those demonstrated in Fig. 3.8.
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The MoCap data used in this thesis is composed of a set of poses over time. These

poses are represented as a set of three-dimensional positional markers (either Euler or

Axis-Angle ). For MoCap poses, PCA has been introduced for dimensionality reduction,

compression and comparing motion sequences [139, 140]. PCA is capable of handling

noise data that is inevitably contained within MoCap, Vieira et al. [102] note that

in practise only a few ( 5) are required to represent postures in a discriminative way.

Nevertheless, selecting the number of principal components to retain and avoiding “curse

of dimensionality” is not an easy task - and is yet to be solved. However, a disadvantage

of this resides within the anthropometric variations in action performance, while subtle

variances can be over generalised by using PCA [139]. A discussion and implementation

of PCA is presented in chapter 6.

Figure 3.8: Low dimensional latent MoCap pose vector visualisation for 3 Principal
Components (PC: a left) CMU Walk ; a right) Kinect Walk ; b left) CMU Jump; b
right) Kinect Jump. Joint angle data is that shown in Fig. 3.7. Where PC represents

Principal Component dimension.
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3.2 Machine Learning

This section briefly introduces the basic concepts of several well-known machine learning

techniques. These techniques have been utilised throughout this thesis to aid in the

decision making process and/or to provide validation to the proposed framework.

3.2.1 Support Vector Machines

Based on statistical learning theory, Support Vector Machines (SVM) is a supervised

machine learning classifier [141]. In simple terms, the SVM produces a model that

represents the training data by learning the optimum separating margin between the

linear hyperplanes of each class. The data points on either side of each hyperplane are

defined as the support vectors. SVMs have been implemented with varying degrees of

success within the MoCap research community. Barnachon et al. [125] noted that the

ability of SVMs to function e�ciently is dependent on the type of features being trained,

with histogram-based representations struggling due to their complexity. Conversely,

Sinha and Chakravarty [104] noted that MoCap data itself is very di�cult to separate,

however by extracting meaningful representations with reduced dimensionality, SVMs

may operate more e�ciently. In cases where the classes of data are not linearly separable,

such as MoCap, the points are projected to a higher dimensional space where linear

separation may be possible. SVM requires the user to state the parameter C, which

controls the trade-o↵ between model complexity and empirical error in SVM.

The radial basis function kernel, which non-linearly maps samples into a higher dimen-

sional space has been found to be e�cient when handling MoCap data [47, 142]. The

radial basis function is able to handle cases when the relationship between the class

labels and data vectors is non-linear [143]. It is defined as:

K(x
i

, x
j

) = exp(��||x
i

� x
j

||2), � > 0 (3.8)

where x are the training vectors and i, j are matrices index identifiers. In addition,

the parameter � determines the shape of the separating hyperplane in the radial basis

kernel.
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3.2.2 Random Forest

Random Forest (RF) [144] has proven to be easy to implement, and very e�cient for

training and testing in various computer vision problems [24, 139, 145] as a multi-class

classification method. It is an ensemble classification that contains n
tree

randomised

decision trees. RF combines bootstrap aggregating (otherwise referred to as bagging

[146]) and randomised feature selection [147, 148] to reduce the correlation between

trees and to aid in noise reduction.

A RF consists of multiple decision trees constructed by supervised learning of a training

set. An RF model is constructed by using the bootstrap aggregating method to randomly

generate n
tree

decision trees which are each provided with randomly selected samples of

the training input and then all the decision trees are combined into a decision forest.

For this thesis each bootstrap, a random m
try

(default 3) sample of the training data is

used which determines the size of an unpruned tree. For classification (and regression)

the model predicts a corresponding class based on the voting of all trees, where the class

with the greatest number of votes is determined as the probabilistic choice. RF only

requires one user parameter, n
tree

, which sets the number of decision trees to grow.

3.2.3 Artificial Neural Networks

Artificial Neural Networks (ANN) is a popular technique used for a variety of classifica-

tion tasks. For MoCap data it has been used extensively to aid in healthcare, recognition

and feature detection [107, 127, 149]. In mathematical terms, a neuron is an operator

that maps Rp ! R. If we consider a neuron j receives a signal z
j

that is the sum of p

inputs x
i

scaled by associated connector weights w
ij

:

z
j

= w0j +
pX

i=1

x
i

w
ij

=
pX

i=0

x
i

w
ij

= XTw
j

(3.9)

where x = [x0, . . . , xp]T is the input vector with T denoting transposition, w
j

=

[w0j , . . . , wpj

]T is the weight vectors of a neuron j, and w0j is the bias parameter, which

is treated as an extra connection with a constant unit value of x0 = 1. A neuron outputs

a logistic sigmoid activation function.
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A neural network is a set of interconnected neurons. In this thesis, a feed forward neural

network is implemented, with the neurons organised in layers so that a neuron in layer

l receives inputs only from the neurons in layer l� 1. The first layer is referred to as the

input layer, the last layer is denoted as the output layer and any intermediate layers are

called hidden layers.

3.3 Discussion and Conclusions

The techniques described in this chapter provide the basis for the contributions that are

presented in later chapters. A framework, for simplicity, is presented as follows:

1. Marker-based and/or marker-less MoCap data is represented in a new feature

basis to enable a more e�cient representation for use in recognition and healthcare

applications.

2. Identify and rank poses based on its discriminative power to reduce the number

of training samples required.

3. Attempt to recognise the appropriate action class for unseen MoCap sequences.

4. Identify subtle di↵erences between MoCap sequences to enable clinical outcome

measures of human motion. Specifically, identifying motions between the young

and old in relation to their mobility.

These steps are implemented in chapter 4, to rank and extract key poses for use in

human action recognition. Further utilised in chapter 5 and chapter 8. How can human

action be decomposed to reduce training time? Is it possible to detect subtle di↵er-

ences between participant groups? How should a framework be developed to realise a

clinical framework? This thesis attempts to answer these questions, a list of specific

contributions is presented in Section 1.4 and also at the beginning of each chapter.



Chapter 4

Exemplar Paradigm:

Discriminative Key Pose

Extraction from Marker-based

MoCap

In this chapter, two approaches for identifying descriptive and discriminative key pose

for use in human action recognition by using feature ranking are proposed and

evaluated. The ability to recognise action sequences robustly is important for a large

number of applications, such as health or motion analysis. The first approach, Delegate

Identification and Selection (DIS) identifies delegate postures using a statistical ranking

and joint discrimination function. The second approach, Discriminative Key Pose

Identification (DKPI) determines key poses by assessing the maximum subspace score

of the dissimilarity space. The resulting approaches are evaluated for recognising known

and unknown human motions using temporal-window-based classification and machine

learning techniques.

4.1 Introduction

This chapter combines the competing benefits - flexibility and e�ciency to propose two

approaches that are capable of detecting human action accurately and robustly across

54
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a number of datasets. The first approach, Delegate Identification and Selection (DIS)

identifies delegate postures using a statistical ranking and joint discrimination function.

This approach is based on a generative exemplar-based framework for human action

classification, with MoCap as an input. The proposed representation and selection

approach combines generalised local representations by parameterising joint information

to generate global exemplars to describe the di↵erent phases of an action sequence. DIS

is partly inspired by the use of statistical analysis to determine key poses [117]. The

second approach, Discriminative Key Pose Identification (DKPI) determines key poses

by assessing the maximum subspace scoring of the dissimilarity space. The proposed

approach computes local representations based on joint dissimilarity and mutual joint

respect to identify key poses of a MoCap sequence. The number of delegates for this

approach is varied based on the estimation of the complexity given a particular action

model with their discriminative power and mutual respect to other poses taken into

account [18, 22, 29, 150].

The main contributions of this chapter are as follows:

1. Delegate Identification and Selection: Introduction of a novel algorithm for identi-

fying key poses using statistical ranking schema derived from the t-test. Poses are

selected based on their inter-/intra class discriminatory power using novel ranking

function to form an action model (Section 4.2.1).

2. Discriminative Key Pose Identification: Introduction of a novel framework for

identifying key poses based on k-means clustering of human action. The framework

encodes a joint dissimilarity matrix to identify those active joints of a segmented

sequence which best represent the action sequence (Section 4.2.2).

3. A window-based algorithm for detecting marker-based MoCap sequences is intro-

duced and evaluated. A group of poses are placed within a window-based approach

for classification. Using dynamic programming principles the algorithm is capable

of providing classification results with little latency (Section 4.3).
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4.2 Approach Methodology

This section introduces DIS and DKPI approaches. For simplicity and generalisation,

human motion, typically captured by a marker-based MoCap system, is modelled using

a kinematic chain. A kinematic chain consists of body segments that are connected to

various body joints. A sequence can be seen as a time-sequential of 3D joint coordinates

that relate to the fixed kinematic chain. In this thesis, a motion sequence is a series

of frames (otherwise denoted as poses), with each frame specifying the 3D coordinates

of the joints at a certain time period. Recall, in Section 3.1.1 a sequence is denoted as

P = {pj
t

|t = 1, . . . , T ; j = 1, . . . , J}, where t denotes the time and j is the joint index.

The k-means clustering algorithm underlines the proposed approaches in this section

(presented and discussed in Section 3.1.7). k-means is iterative in nature, starting with

an initial estimation of the centroid for each cluster which continues until convergence

of a motion sequence into an assigned number of k clusters. It has been shown to be

e�cient in segmenting and clustering MoCap data, as demonstrated by Zhou et al. [136].

As highlighted earlier (see Section 3.1.7), accurate estimation of the number of clusters

is crucial. In this thesis, the Elbow method is implemented to identify the optimum

number of k clusters.

4.2.1 Delegate Identification and Selection

The DIS framework selects delegate postures using a statistical ranking and joint discrim-

ination power. A generative exemplar-based framework for human action classification,

with MoCap as an input, is introduced and discussed in the subsequent sections.

4.2.1.1 MoCap Representation

The data represents coordinates for a human subject performing activities in a predefined

action space. That is, within the confide of a fixed global coordinate system. For a HCI

classification, it is important to place the human skeleton data at the centre of the

coordinate system to become view-invariant. The root orientation and translation is

handled in a unique manner because it encodes the transformation over time. As in

[19], the representation of each pose is by an incremental “forward” and “sideways”
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vector relative to the forward-facing direction of the participant. Height remains non-

incremental relative to the distance from the ground plane. Orientation is represented by

an incremental change about the gravitational vertices. Finally, the remaining rotations

are represented by absolute pitch and roll, once again relative to the forward-facing

direction of the skeleton. As has been highlighted in Section 3.1.6, there is no single

solution to parameterisation of rotation that is applicable for all application domains.

The proposed approach requires the parameterisation of the 3D Euler Angles in to

Exponential Map form. This was done to avoid gimbal lock, discontinuities and ball-and-

socket joints complications that are typically found in MoCap. In addition, it provides

a more usable feature vector that is less noisy and mathematically stable. Recall, that

the exponential map maps a vector R3 7! S3 and is formulated from the corresponding

quaternion representation of rotation. As part of the mapping process, several joints

consisted of constant zero values, therefore they are removed.

4.2.1.2 Delegate Selection

Given a motion sequence, P that has been clustered into k clusters, a delegate pose for

each k cluster is identified. The delegate should contain enough information to describe

the motion sequence, and the specific cluster it represents. Therefore, only the most

representative pose of a cluster should be identified as a delegate, denoted as dj
t

. The

Receiver Operating Characteristic (ROC) Curve framework is modified to measure the

within-cluster representation capabilities of each pose at a joint level.

Let Q
k

be a recursive relationship between pj
t,k

with regards to pj
t,k

of a given cluster k

and is given as:

Q
k

= argmin
k2[1,...,K]

⇣ KX

k=1

pj
t,k

+ pj
t,kp

SE2
1 + SE2

2 � 2rSE1SE2

⌘
(4.1)

where Q
k

is the lowest scoring delegate, pj
t,k

and pj
t,k

are two poses within k 2 K cluster

and SE1, SE2 refer to the estimated standard error of the ROC for each pose and its

associated joints; and r represents the estimated correlation between poses when the

cluster Euclidean distribution is taken into account. For each cluster, a delegate is

selected based on the lowest average ROC error, similar to the Area Under the Curve.

The pose which has the lowest standard error, compared to other poses of the same
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cluster is selected as a delegate representation for the action class. This results in a set

of delegate poses D = {dj1,k, 2, k
j , . . . , dj

t,K

}, d 2 P.

4.2.1.3 Delegate Ranking

It is now possible to represent P into a set of D delegate poses, where each delegate

represents each phase of the action sequence. While this may be su�cient in recognising

human motion, inter-/intra-class variation exists. To overcome this variation and provide

a more compact but e�cient representation each delegate pose is ranked against all

other delegates to determine which are the most representative and discriminative. To

rank each delegate pose, a statistical analysis based function is proposed employing the

standard significant test referred to as the t-test. The significance between two poses at

a joint level, dj1,k and dj1,k is computed as:

C
score

(dj1,k, d
j

1,k) =

s
(j � 1)s2

x

+ (j + 1)s2
y

n1 + n2 + 2
(4.2)

where j is the index location for the j-th joint for dj1,k and dj1,k; sx and s
y

are the standard

deviation (SD) between j-th joint and all other joints and n1, n2 are the sample sizes of

d1 and d2. Using the cost function to identify pose level significance, a set of delegates

is ranked, given as:

R
score

=
X

i2D

 
X

i

⇤2D
C
score

(dj
i,k

, dj
i

⇤
,k

)

!
(4.3)

where R
score

is the representative power of each delegate pose compared to all other

delegates.

For clarity, an exemplar model can be constructed by selecting the number of exemplars

to retain for each action class, denoted as e. For this approach, e is defined to determine

the number of delegates to retain for each action class. This is given as:

modell =
LX

l=1

max
e

 
R

score

!
(4.4)
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where modell is the exemplar model and l = (1, 2, . . . , L) denotes the action class. An

example of which is demonstrated in Figure 4.1.

4.2.2 Discriminative Key Pose Identification

DKPI determines key poses by assessing the maximum subspace scoring of the dissim-

ilarity space of the star skeleton representation. The approach computes local repre-

sentations based on joint dissimilarity and mutual joint respect to identify key poses.

Unlike the approach proposed in Section 4.2.1, the number of delegates are dynamic,

based on the action complexity with regards to the discriminative power and mutual

respect to other poses. Two user-defined “retain” parameters are necessary; the number

of active joints to retain and a percentage value for the number of poses to retain.

4.2.2.1 MoCap Representation

For the DKPI approach, as in [121], only major anatomical joint landmarks associated

with human motion are retained, such as hands, head, feet and torso, with other joints

discounted. Marker-based datasets are discussed at length in Section 2.3, the following

joint locations have been retained (where possible), left hand, left elbow, right hand,

right elbow, left shoulder, right shoulder, head, upper-torso, lower-torso, left knee, left

foot, right knee and right foot. In addition, the joints retained must contain three DOF

to provide an orthogonal representation of the motion.

After the 3D positions of interest are extracted, as proposed in Section 4.2.1, the rep-

resentation of each pose by a incremental “forward” and “sideways” vector relative to

the forward-facing direction of the participant. Height remains non-incremental relative

to the distance from the ground plane. Orientation was represented by an incremental

change about the gravitational vertices. Finally, the remaining rotations are repre-

sented by absolute pitch and roll, once again relative to the forward-facing direction of

the skeleton.

In the next step of pre-processing, Z-score normalisation [151] is undertaken for each

action class to make our approach robust to di↵erent body sizes and subtle inter-class

variations. The normalisation of each joint is undertaken at each j-th joint, at time t
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Figure 4.1: Delegate Identification and Selection Approach: Decomposition of a hu-
man participant running in a circle (extracted from MoCap). (a) original motion se-
quence of a human running in a circle. (b) k -means clustering, where each colour
denotes the cluster. (c) delegate pose for each cluster. (d) the selected delegate exem-

plars for the motion sequence. where e = 3.
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Figure 4.2: A visual representation of the skeletal joints of interest when forming a
Star Skeleton representation.

using a joint mean vector ~f
j

, and the standard deviation of the joint group, �
j

calculated

across all action sequences which form part of the action class. This is given as:

~pj
t

=
pj
t

� ~f
j

�
j

(4.5)

4.2.2.2 Star Skeleton Dissimilarity Space (Euclidean)

The classical approach to human action classification focuses on three-dimensional rep-

resentations concatenated to form a feature vector. However, these types of HCI rep-

resentations struggle when scaled, or to factor in body size and action performance.

Following the approach introduced in Wang et al. [18] and Vieira et al. [102], it is possi-

ble to encode a “star skeleton” representation to completely represent the global position

and orientation (Figure 4.2 provides a visual representation of the skeleton).
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Recall, any number of joints can be tracked by a marker-based system, for each joint j,

a pairwise relative position is computed by taking the di↵erence between the position of

j⇤ and any other joint j-th for time t, given as:

~pj
t

= ~pj
⇤

t

� ~pj
t

(4.6)

The feature representing the j-th joint is given as:

~pj
t

= {~pj
t

|j⇤ 6= j} (4.7)

The relative position, provide by the star skeleton representation allows for complex

actions to be represented in pairwise form. The spatial variation contained within ~pj
t

can be e�ciently handled using a clustering strategy, Figure 4.3 demonstrates the skeletal

posture and its associated distance matrix. In this approach, as with DIS, a set of poses,

P, comprising of ~pj
t

is clustered into k clusters.

4.2.2.3 Most Active Joints in Clusters

While it may be possible to train a machine learning classifier on the star skeleton alone,

it is unlikely to yield accurate, or repeatable results. In this section, the objective is

to identify the most active joints of each cluster, which in-turn will be used to describe

the “key” phases of the action sequence. As in [70, 121, 152, 153], the selection of the

most active joints can aid in reducing inter-/intra-class variation and provide a more

discriminate representation.

In order to identify human poses, consider the star skeleton representation as a dissim-

ilarity space representation [154], where each sample is a pairwise dissimilarity to a set

of other joints. Using the dissimilarity representation for each time period t, a mutual

respect between two poses, ~p1 and ~p2 and their dissimilarity lengths of i, q, Mutual

Information can be expressed in entropy, given as:
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Figure 4.3: Example of skeleton postures and their respective distance matrices: a) A
skeleton figure of a subject pre-jump phase. b) A skeleton figure of a subject walking.

M(~p1; ~p2) = H( ) +H(⌦)�H(⌦, )

= �
X

i2 
p(i) log p(i)�

X

q2⌦
p(q) log p(q) +

X

q2⌦

X

i2 
p(i, q) log p(i, q)

=
X

i2 

X

q2⌦
p(i, q) log

 
p(i, q)

p(i)p(q)

!
(4.8)

where H( ) and H(⌦) represent the marginal entropies, H(⌦, ) joint entropy based

star skeleton joint grouping, and p() is a probability density function to map joint

distributions.
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The Mutual Information (Eq. 4.8) is capable of identifying complex relationships be-

tween elements. In the DKPI approach, each action sequence in dissimilarity space is

clustered using k-means. For each cluster, the dissimilarity space for each pose is decom-

posed into joint-based dissimilarity representations and compared in a recursive manner

to all other joint dissimilarity representations of the cluster [155]. To determine which

joints represent the most “active” a cost function is defined as:

cost(~p1, ~p2) = min
~p2k

{M(~p1; ~p2)} (4.9)

where k is a cluster of dissimilarity representations, and those joints that contain the

lowest cost are identified as “key joints”. To identify and retain the key joints, a user-

defined parameter is required; this outlines the number of joints to retain. Retaining the

same matrix format, for each cluster all joints that have not been selected as “key” are

assigned zero values and only those joints which have been identified as “key” contain

joint information. This is undertaken to reduce confusion and provide a more represen-

tative element for training and classification.

4.2.2.4 Sequence Reduction

While it is possible to train a machine learning classifier solely on the dissimilarity

representations defined earlier, data similarity can cause classifier confusion, but also

result in higher training times. Therefore, to improve classification accuracy and reduce

model complexity (thus reduce training time) a sequence reduction algorithm is required.

Taking the “key” joint representation encoded earlier, k-means clustering is applied to

the feature set to obtain a set of k clusters. For each cluster, the average in-cluster

distance is computed to determine how close each pose is to each other pose of that

cluster. Recall that P has J multiple star skeleton representations, K clusters and N

poses for each cluster. For each cluster, sum of Euclidean distances between each other

pose is computed as follows:

score =

P
N

i=0,i 6=m

P
J

k=0(~pi,k, ~pm,k

)2

N2
(4.10)
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With a user-defined parameter (percentage) used to determine the number of poses to

retain within each cluster. Simply, retain X amount of poses that have the lowest score.

4.3 Recognition

As has been mentioned previously, human action classification is a relatively di�cult

task, more so when there is a requirement to perform classification quickly, or otherwise

to provide a result within a reasonable time to enable the human user to make a judge-

ment. Given a test stream of MoCap, A = (pJ1 , p
J

2 , . . . , p
J

T

), where T denotes the total

number of pose frames and J is the number of joints. A fair assumption is that any

human action is an evolutionary process over time, and forms a time sequence. Inspired

by window-based approaches [22, 125], a set of A poses is decomposed into a variable

number of windows groups, denoted as w, that contains s number of poses. This can be

represented as:

A = {
/s

[pJ
a

, . . . , pJ
b

]| {z }
w1

}, {
/s

[pJ
c

, . . . , pJ
t

]| {z }
w2

} (4.11)

where a  b  c  t. The decomposition of A into w windows enables classification to be

performed at an undetermined instance in time. More importantly, the window-based

approach generalises over small variations in MoCap.

To measure the similarity between two poses, p1 and p2, the City Block metric, denoted

as C
p

is employed and given as:

C
p

(p1, p2) =
JX

j=1

|pj1 � pj2| (4.12)

where j is the joint index and C
p

is the similarity between p1 and p2 respectively. This

method has multiple benefits, not least the ability to undertake a recursive similarity

measure between modell and each pose contained within a specific window group, w 2

W . Employing Dynamic Programming (DP) ensures e�ciency and speed to enable

suitable processing power to make decision in a real time environment. Within each w

window, a majority voting technique is employed, where the class with the most votes
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in a window is selected as the window vote - very similar to the First-Past-The-Post

principle used in General Election Voting. A prediction of the action class is determined

by aggregating the winning vote from each window, V
w

. This is defined as:

Y = max f
l

w
(V

w

) (4.13)

where V
w

is the vote for each window, f is a frequency function and Y is the class

prediction based on group majority voting.

4.4 Experiments

This section contains action classification results for detecting typical gaming motions

using two proposed approaches defined in Section 4.2.1. To simulate a real world ap-

plication, all experiments presented hereafter were conducted on unknown participant

actions, meaning that no data from the participant being tested was included in the

training set. This is a very important aspect, as it is reasonable to assume that train-

ing and testing sets will be di↵erent for real world usage. Protocols that are common

within the community do not draw this distinction and perform recognition on known

participants.

4.4.1 Protocol and Machine Learning

Marker-based MoCap data extracted from the CMU [4], HDM05 [85] and TUM Kitchen

[86] datasets described in detail in Section 2.3. These datasets consist of a number of

marker-based MoCap sequences providing a range of human action sequences performed

by a number of di↵erent participants in a variety of recording environments. Processing

these datasets o↵er two very important advantages over other methods of evaluation,

(i) a recorded ground truth of the MoCap permits the quantitative evaluation of the

proposed framework and (ii) the same participant performing the same action multiple

times and that is intended for training. Each dataset was captured at 120Hz.

To assess the performance of both approaches, the following experiments were performed.

Firstly, machine learning techniques SVM [141] and RF [144] and ANN were trained for
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each approach with a two-folder cross validation undertaken to fine-tune the algorithms.

Secondly, a comparison using the proposed window-based technique is presented and

tested.

4.4.2 Selection Criteria

4.4.2.1 Approach 1: Delegate Identification and Selection

The DIS framework selects delegate postures using a statistical ranking and joint dis-

crimination function. A generative exemplar-based framework for human action classifi-

cation, with MoCap as an input, is introduced and discussed in the subsequent sections.

Table 4.1: Delegate Identification and Selection: Obtained k selection based on au-
tomatic WCSS for k-means clustering with FPS rate for classification.

Dataset Avg k FPS
CMU 23 (±19) 23

HDM05 12 (±7) 24
TUM 24 (±3) 24

The approach has been developed for practical HCI-based autonomy, with an attempt

at removing as much human interaction as possible. Hence, there are only two user

defined parameters; for exemplar construction e denotes the number of exemplars to

retain for each action class, as stated in Eq. 4.4. For classification, s denotes the

window size, as seen in Eq. 4.11. However, the alteration of either of these parameters

can a↵ect the result, as demonstrated in Figure 4.4, when the window size is altered.

A minimum accuracy is reached when approximately 50 frames form the window size,

this may suggest that the high frame rate provided by MoCap can result in intra-class

confusion when motions are changing from one to the other. However, it is clear that

the accuracy fluctuates across the window sizes.

Based on fine-tuning and experimentation, e was set at 3 and the window was set at

10. While higher classification results were possible for each dataset, a default value

was set to provide comparability. This was also to enable generalisation for potential

real world application where fine tuning is not possible. The window size parameter is

not unreasonable considering the data capture rate is 120Hz. It is important to note,

emphasis is placed on selecting suitable action sequences for exemplar creation. As these

actions are modelled without any artificial representation, if they are not appropriately
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selected, classification rate can be a↵ected. The approach relies on k-means to group

similar poses, if a poor quality action is provided it would result in a poor representation.

Unlike other works, where k is set manually and/or without a protocol, this framework

automatically selects the k value, which is presented in Table. 4.1. The k calculation

reflects the freedom in which the datasets were captured, for example CMU and TUM

allowed the subjects to perform movement relatively freely. The HDM05 was captured

with a rigid protocol in place, thus the resulting k was lower.

Figure 4.4: Delegate Identification and Selection: Accuracy results for each dataset
as the window size s is increased.

4.4.2.2 Approach 2: Discriminative Key Pose Identification

DKPI determines key poses by assessing the maximum subspace scoring of the dissimi-

larity space of the star skeleton representation. The approach computes local represen-

tations based on joint dissimilarity and mutual joint respect to identify key poses.

Table 4.2: Discriminative Key Pose Identification: Obtained k selection based on
automatic WCSS for k-means clustering with FPS rate for classification.

Dataset Avg k FPS
CMU 11 (±4) 38

HDM05 14 (±4) 39
TUM 17 (±6) 36

The approach seeks to reduce an action sequence, while maintaining key representations.

Unlike the approach proposed in Section 4.2.1, the number of delegates are dynamic,



Chapter 4. Exemplar-based Key Pose Selection 69

based on the action complexity with regards to the discriminative power and mutual

respect to other poses. Two user-defined “retain” parameters are necessary; number of

active joints to retain and a percentage value for the number of poses to retain. As with

the previous approach, s denotes the window size, as seen in Eq. 4.11. Altering the size

of the window can alter the recognition result, Figure 4.5 demonstrates the change in

accuracy as the window size increases. The accuracy fluctuates depending on the type

of action sequence and dataset. Introducing more frames within the window tends to

improve and maintain classification accuracy. However, as discovered in DIS, accuracy

is partly dependent on window size.

Based on fine-tuning and experimentation, the window size was set at 40 and the number

of poses to retain was set at 0.40 - meaning we’d keep 40% of all possible poses. While

it would be possible to achieve higher accuracy results by fine-tuning the parameters for

each datasets, a default value was set to provide comparability. The approach relies on

k-means to group similar poses, if a poor quality action is provided it would result in

a poor representation. Unlike other works, where k is set manually and/or without a

protocol, this framework automatically selects the k value, which is presented in Table

4.2. The k calculation reflects the freedom in which the datasets were captured, however,

unlike in DIS approach, clustering is performed on the star skeleton dissimilarity space

representation.

Figure 4.5: Discriminative Key Pose Identification: Accuracy results for each dataset
as the window size s is increased.
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Table 4.3: Result Comparison: Classification accuracy results for Delegate Identifi-
cation and Selection and Discriminative Key Pose Identification approaches compared

against previous best.

Dataset DIS (%) DKPI (%) Previous best
CMU 89.01 92.96 90.92 [22]

HDM05 93.19 94.45 97.27 [153]
TUM 86.29 91.30 92.56 [22]

4.4.3 Result Comparison

Both approaches have competing benefits. Approach 1 (DIS) is very quick in developing

a model and performing classification, whereas approach 2 (DKPI) takes considerably

longer to construct a model and perform classification. Table 4.3 presents a comparison

of the classification results obtained through both approaches. It is clear that approach

2 has achieved higher classification results, whereas approach 1 has still performed very

well considering the simplicity of the approach.

Evaluating DIS against the CMU dataset against machine learning techniques resulted

in a lower-than-expected classification result, with SVM obtaining 58.19%, RF obtain-

ing 62.71% and ANN obtaining 68.75%. The low results indicate the possibility that

machine learning struggles without ample training samples to compute a model. In

comparison with other state-of-the-art, experimental protocol in [22], the same proto-

col was utilised to allow for direct comparison. An exemplar model with 9 action classes

was constructed and tested on 49 test sequences (as in [22]). The approach presented

achieved a classification rate of 87.78% when compared to [22] classification accuracy

of 90.92%. This is reasonably good considering the limited number of training samples

used and the simplicity of the approach. However, to assess the possible potential of

the framework for real world deployment, the number of test sequences was increased.

A total of 180 test sequences from the CMU dataset were selected. In this experiment

a classification rate of 89.01% was obtained. While this result is slightly lower than

the previously reported accuracy, it reflects the capability of the approach to handle a

significant number of test sequences with varied body compositions.

The DKPI resulted confident classification results, with SVM obtaining 80.19%, RF ob-

taining 83.76% and ANN obtaining 84.87%. These results are significantly higher than

those obtained using DIS, this may be down to more samples being used for training.
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In comparison with other state-of-the-art, the approach presented achieved a classifi-

cation rate of 94.04% when compared to [22] classification accuracy of 90.92%. This

is an improvement, however this may be due to a higher number of samples used for

training. To assess the possible potential of the framework for real world deployment,

the number of test sequences was increased. Using the same experimental protocol pre-

viously mentioned with a total of 180 test sequences a classification rate of 92.96% was

obtained.

Benchmarking DIS against the HDM05 dataset, subject b was randomly selected from

the dataset, then 9 action classes were selected to construction the exemplar model. For

classification, 160 test sequences from the remaining 4 subjects were randomly selected.

Using machine learning techniques, an overall low classification rate was achieved, with

SVM obtaining 48.62%, RF obtaining 70.10% and ANN obtaining 58.10%. A conclu-

sion can be drawn for this the varied machine learning results; that the low classification

results highlights the need for a robust classification framework to take into account

spatio-temporal changes. Current state-of-the-art approaches, [156] reported an accu-

racy of 80% when using their manual key-frame approach. While this was a good

classification rate, the approach is fully automated and able to operate online without

extensive training and manual subjective input. Further, Gowayyed et al. [153] utilised

Histogram of Oriented Displacement, where they achieved an accuracy of 97.27%. A

classification rate of 93.19% was obtained using the approach presented.

For the DKPI framework, SVM obtained 73.22%, RF obtained 79.12% and ANN ob-

tained 87.29%. Accuracy obtained through machine learning is near that achieved by

using the window-based approach, however model complexity and model training are key

shortcomings. In addition, machine learning is not able to factor in temporal aspects of

human motion. A finally classification rate of 94.45% was obtained. This demonstrates

that DKPI framework is robust and e�cient at representing human motion.

To provide comparison with other works that have utilised the TUM dataset the DIS

framework was compared using a set of sequences (0�2, 0�4, 0�6, 0�8, 0�10, 0�11, 1�6)

for testing and the remaining 13 sequences to construct the exemplar model. To maintain

consistency with others who have used this dataset ([22, 91]) a 10 class test protocol

where “jogging” and “walking” were separated was selected. For machine learning,

the approach achieved an overall low classification rate, with SVM obtaining 59.52%,
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RF obtaining 64.87% and ANN obtaining 48.98%, albeit slightly better than the CMU

dataset. Using the window-based approach, a classification rate of 86.29% was achieved.

The classification rate achieved by using the approach is comparable to current state-

of-the-art. In [22], they were able to achieve an accuracy of 92.56% by using integral

histograms. This is considerably better than early work in [54], where an accuracy of

62.77% was reported.

Evaluating the DKPI framework, SVM obtained 78.46%, RF obtained 72.75% and ANN

obtained 69.71%. Using the window-based approach, a classification rate of 91.30% was

achieved. The dataset contains a number of complex and varied sequences in which

the model was required to model intrinsic details; the classification results highlight the

versatility of this approach.

Two approaches have been evaluated against benchmark datasets. The DIS framework

is capable of e�ciently recognising action. While several major works have been capable

of achieving high accuracy rates, they are fine tuned to specific actions and/or datasets.

This framework is simple, yet elegant and is capable providing suitable classification

results. The DKPI framework is capable of e�ciently recognise human action. When

presented with complex human action, the approach is capable of modelling key phases

while reducing the model size.

4.4.4 Phase Detection

The exemplar paradigm requires the selection of descriptive poses for construction of

the exemplar model. This chapter has demonstrated the ability to detect key poses, as

demonstrated in Figure 4.6. Key exemplars have been important to allow for human

action classification, as highlighted with both approaches. Extending the concept of both

approaches, it is possible to identify and represent key phases of an action sequence, as

demonstrated in Figure 4.6 the second level represents the exemplar sequence for each

phase. The exemplars, by visual inspection are representative of the phases for the

action. Future chapters of this thesis will explore human action segmentation for the

task of classification and human analysis.
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Figure 4.6: Decomposition of a human participant. Top row denotes a person walking
in a straight line. Bottom row is a person performing a chair rise (extracted from
MoCap). (a) original motion sequence of a human. (b) k -means clustering, where each
colour denotes the cluster. (c) delegate pose for each cluster. (d) the selected delegate

exemplars for the motion sequence. where e = 3.

4.5 Discussion and Conclusion

The techniques presented in this chapter demonstrate the ability of both approaches to

handle a large variety of action sequences from di↵erent sources for applications in HCI.

Further, and more importantly, both approaches presented have removed the need for

large-scale training of complex MoCap sequences. For example, if we were to consider

the proposal of Barnachon et al. [22], the framework relies on manual selection of k value

for clustering which is an incredibly di�cult task. When constructing a model with the

exemplar paradigm it is important to select the most representative action sequences,

as the model will be generated based on the observed sequence. Any irregular, or poor

performance in the activity would otherwise be modelled. In the approach of [22],

sequences are manually selected and large-scale testing does not seem feasible.

The DIS framework selects delegate postures using a statistical ranking and joint discrim-

ination power. A generative exemplar-based framework for human action classification,
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with MoCap as an input, is introduced and discussed in the subsequent sections. By

ranking and then selecting the most informative poses based on statistical significance,

instead of selecting the most informative based on cluster generalisation and placing in

time sequential order, proved to be very e↵ective. On the other hand, DKPI determines

key poses by assessing the maximum subspace scoring of the dissimilarity space of the

star skeleton representation. The approach computes local representations based on

joint dissimilarity and mutual joint respect to identify key poses. The approach con-

sistently achieved the higher classification accuracy for all experiments. This may be

due, in part, to the model containing more examples of the action class that makes it

easier to perform classification. Nonetheless, a challenge still remains; the ability to se-

lect the most suitable representation for each action class is very di�cult. The exemplar

paradigm requires the manual selection of the most typical sequence, future work should

seek to address the question; is it possible to determine what is a correct performance of

an action sequence free from human interpretation? In addition, work should focus on

determining how to select an action sequence to model that represents the ideal charac-

teristics of the motion. This thesis unfortunately does not directly address this question.

However, future work should seek to address this.

Several works have sought to reduce motion sequences to it’s key representations, such

as Barnachon et al. [22], Gowayyed et al. [153] and Bloom et al. [117] have required

manual selection of a large number of parameters such as the number of clusters to gen-

erate. Both approaches presented in this chapter require user involvement in parameter

selection that may have inadvertently a↵ected classification accuracy. Automation takes

the subjective decision-making process away from the user and places it within the con-

fides of the machine. Manual selection of the cluster parameter can influence the overall

result, as has been found in the works above. This thesis attempts to remove the need

for large amounts of user involvement to develop an automated supportive framework

for classification, detection and analysis.

This chapter has introduced two approaches for human action recognition in which a

larger number of varied action classes can be recognised, as well as reducing the intra-

/inter-class variations. The main contribution of this work lies with the ability to detect

key poses to represent each cluster and in turn action class. The use of an action

model to represent each action class has shown strengths compared to traditional data

intensive training-based approaches. However, it is important to consider the practical
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implications of marker-based MoCap and the proposed approaches. There is a “start up”

cost in placing the markers on the participant, setting up the hardware and calibration.

It is not feasible for implementation of marker-based systems in the real world. While

action classification can be performed robustly in an o✏ine approach, it is important

to make decisions as quickly as possible. Chapter 5 extends the concepts and principles

presented in this chapter to perform human action recognition in real-time.



Chapter 5

Exemplar Paradigm: Online

Template Matching and Posture

Representation with

Marker-based MoCap

In this chapter a template-based exemplar approach with recognition performed online

is introduced. A set of delegate poses are recovered to represent each class by applying

k-means clustering. A dynamic model, based on a novel similarity function is

constructed to represent a set of diverse action classes. Robust feature representation is

demonstrated using exponential map transformation with a novel real-time recognition

framework.

5.1 Introduction

Recognising and classifying human action is a di�cult task. This is in a large part due

to large variations among subjects, overlap of poses between actions and data noise [6].

It is important to have a su�cient number of training samples to allow for each action to

be represented e↵ectively. As a result, a large number of training samples are common

for many recognition approaches. However, it is not always practical to utilise a large

number of training samples due to the size and complexity in computing classification.

76
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Therefore, this chapter proposes the use of the exemplar paradigm as an e↵ective ap-

proach to modelling human action. In the approach proposed, the exemplar paradigm

is implemented to reduce an action sequence to its most descriptive key elements.

Figure 5.1: Flowchart of the approach. Top row denotes the process for generating
an action model. Bottom row denotes the online recognition framework.

This chapter presents a combined template-based exemplar approach for online action

recognition evaluated by using streamed motion sequences provided by three popu-

lar marker-based MoCap datasets (as demonstrated in Figure 5.1). To construct an

exemplar-based action model a single action sequence is used to represent each action

class, with each pose of the sequence transformed and represented in Exponential Map

form. Because of the success of clustering in chapter 4, k-means is employed to group

each action based on similarity. For each k cluster, a delegate exemplar is selected

based on a novel ranking scheme. An interesting by-product of the clustering process

(as discussed in Section 4.4.4), is that specific phases of the action sequence can be rep-

resented, with each delegate exemplar placed into a time-ordered sequence to reflect the

di↵erences phases. For recognition, each pose is transformed into Exponential Map form

and compared against the delegate exemplar model using the City Block metric, which

returns a prediction of the most similar exemplar. Finally, DTW is performed to match

and recognise human action by analysing the labels associated with each classified pose

and a corresponding exemplar.

The main contributions of this chapter are as follows:

1. The use of the exemplar paradigm to model “key” descriptive elements of action

sequences enabling the overall reduction of the training sample (Section 5.2).

2. The integration of k-means clustering and automatic selection of the k criteria for

segmenting MoCap (Section 5.2).
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3. The use of a template-based label matrix to represent each action classes and

Dynamic Time Warping for online real time recognition (Section 5.3).

5.2 Exemplar-based Template Model Definition

Recall that human motion, typically captured by a marker-based MoCap system, is

modelled using a kinematic chain. A kinematic chain consists of body segments that are

connected to various body joints. A sequence can be seen as a time-sequential sequence

of 3D joint coordinates that relate to the fixed kinematic chain. In this thesis, a motion

sequence is a series of frames (otherwise denoted as poses), with each frame specifying

the 3D coordinates of the joints at a certain time period. Recall, in Section 3.1.1, a

sequence is denoted as P = {pj
t

|t = 1, . . . , T ; j = 1, . . . , J}, where t denotes the time

and j is the joint index.

Figure 5.2: Joint Representation: A signal for the action Jump from the CMU
Dataset. a) Euler Angle signal. b) Exponential Map signal.

As highlighted in Section 3.1, there is no single solution to parameterisation of MoCap

rotation that are suitable for all application domains. The approach presented in this

chapter relies on parameterising the 3D Euler Angle (refer to Section 3.1.3 for a de-

tailed discussion) into Exponential Map form (see Eq. 3.6). The representation and

transformation from Euler Angle to Exponential Map can be visualised in Figure 5.2.

This representation has been selected over other approaches as it avoids gimbal lock,

discontinuities and ball-and-socket joints complications that are associated with using

marker-based MoCap data.
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Figure 5.3: Cluster Visualisation: Example of a MoCap sequence represented by
clusters. Left: Chair Rise. Right: Running in a circle.

5.2.1 Delegate Selection

The k-means clustering algorithm underlines the proposed approaches in this section

(presented and discussed in Section 3.1.7). k-means is iterative in nature, starting with

an initial estimation of the centroid for each cluster which continues until convergence

of a motion sequence into an assigned number of k clusters. It has been shown to be

e�cient in segmenting and clustering MoCap data, as demonstrated by Zhou et al. [136].

As highlighted earlier in chapter 4, k-means is computationally faster when dealing with

a large number of observations (such as poses) when compared to hierarchical clustering

methods making it ideal for clustering marker-based or marker-less MoCap data.

The objective is to cluster an action sequence in to k clusters, with each cluster containing

similar poses. Hence, as a by-product of k-means process, each cluster characterises a

phase of the action. Figure 5.3 demonstrates the clustering process for two distinctively

di↵erence action sequences. Observe that for each cluster, similar poses are grouped

together, making it ideal for the application of pinpointing similar poses. However,

the di�culty with k-means is the selection of k. Refer to Section 3.1.7.2 for a detailed

discussion on selecting the optimum k.

To select a delegate for each cluster, a ranking scheme is applied for each cluster pose

according to the City Block metric (also referred to as Manhattan distance). The equiv-

alence D between any two poses pj
t

in a single cluster is measured using the total distance

amongst corresponding joints, defined as:
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D(pj
t

, pj
t

) =
JX

j=1

|pj
t

� pj
t

| (5.1)

A delegate exemplar, denoted as E
e,k

, is a pose which has the lowest distance average

between a cluster grouping of poses. A visual representation of the data at each stage

is demonstrated in Figure 5.4.

5.2.2 Temporal Pose Ordering

With each delegate determined for each cluster it is possible to determine where in the

temporal sequence the pose has occurred. Therefore, each delegate is ordered based on

appearance in the original sequence and assigned a unique label. This label is utilised by

the recognition framework to perform template matching. Thus, for each action model,

k number of delegate exemplars are retained and a time-ordered unique label sequence

to represent each action class. For simplicity, let C = {c
e

|e = 1, . . . , E} be the action set,

where c
e

= {E
e,k

|k = 1, . . . ,K
e

} be the action model which is composed by K number

of exemplars for action class e.

5.3 Recognition: real-time classification

The approaches presented in chapter 4 operated in an o✏ine manner, meaning that they

were not able to provide results in real-time. In this section, a real-time classification

framework is proposed to enable recognition to performed as the action sequence unfolds.

Given a test stream of MoCap, A = (pJ1 , p
J

2 , . . . , p
J

T

), where T can be of any length

and J is the number of joints. Each t-th pose is treated as an individual entity, with

the assumption that the evolution of the sequence would result in an observed action

sequence in temporal order. The classification of each system is as follows.

For each t-th pose of A, a parameterisation process is undertaken, each pose is param-

eterised in Exponential Map form (as mentioned previously, see Section 3.1.3). With

the pose represented, the distance function defined in Eq. 8.6 is employed to determine

the similarity between the t-th pose and the delegate exemplar model representing. The

comparison between each pose and the exemplar model is given as:
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Figure 5.4: Example of the “walk” sequence from the CMU Dataset. a) Original
skeleton sequence. b) Delegates representing the action sequence. c) Visual segmen-
tation bar of the sequence. d) Kernel matrix representing the agreement. e) Pose

projected and visualised in 2D space.

L
t

:= min{D(ā
t

, E
e,k

)|e = 1, . . . , E; k = 1, . . . ,K} (5.2)

where L
t

is a class indicator matrix. The L
t

for each pose is determined by the label

assigned to the delegate pose. Recall, for each delegate exemplar a unique label is

assigned. The defined exemplar, and the associated label form a unique string that
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represents the action being considered. A version of DTW is implemented to determine

the action class of the current t-th observation based on the history if assigned labels.

Thus, over time a sequence of unique labels describing the action is constructed. It is

possible to then consider the temporal domain, as classifying poses individually will not

provide the context to allow for robust recognition. An observed sequence can be of any

length, to handle this DTW is employed as the action unfolds to match the observed

label sequence to one of our previously learnt unique label sequences which describe the

phases for each action class.

Given an observed label L1, . . . , Lt

which is derived using the approach above, a class

indicator matrix is compared with each action model c
e

to find the best pattern match.

Figure 5.5 demonstrates how the mapping between the model and a test sequence occurs.

The winning class L
t

is determined by the minimum DTW cost with respect to the

Itakura constraint, given as:

L
t

:= min{DTW (L1⇠t

, c
e

)|
e=1,...,E} (5.3)

Finally, by having each pose classified, recognition of the sequence up to any time period

is based on the cumulative voting indicated in L. The recognition rate is computed by

the total number of correctly classified frames divided by the total number of frames up

to point t.

5.4 Experimental Results: Real-time Recognition

This section contains action recognition results for detecting typical gaming motions

using the approach defined in Section 5.2. The same experimental protocol as employed

in Chapter 4 is used. Further, to simulate a real world application, all experiments

presented hereafter were conducted on unknown participant actions, meaning that no

data from the participant being tested was included in the training set. While it is

possible to construct a model with multiple action sequences, this chapter has introduced

a framework that requires only a single action sequence to construct an exemplar model.

All results presented in this section were computed based on the average accumulation

for classification.
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Figure 5.5: Example of the best path matching between the action model and a test
sequence. Green: Denotes the correct label sequence and structure. Red: Shows the

attempted mapping for the test sequence. Note: there is no end point constraint.

5.4.1 Protocol and Machine Learning

Marker-based MoCap data extracted from the CMU [4], HDM05 [85] and TUM Kitchen

[86] datasets are described in detail in Section 2.3. These datasets consist of a number of

marker-based MoCap sequences providing a range of human action sequences performed

by a number of di↵erent participants in a variety of recording environments. Processing

these datasets o↵er two very important advantages over other methods of evaluation,

(i) a recorded ground truth of the MoCap permits the quantitative evaluation of the

proposed framework and (ii) the same participant performing the same action multiple

times and that is intended for training. Each dataset was captured at 120Hz. Each

dataset contains a number of 3D Euler joint angles extracted from markers (CMU: 41,

HDM05: 42, TUM: 46) that are placed on anatomical landmarks of a human subject. In

addition to the joint angles, root orientation and translation is provided for each frame.

Each dataset was captured and presented at 120Hz.

To be consistent with the current state-of-the-art [22], 9 action sequences, each repre-

senting a single action class were extracted and 49 action sequences selected for testing

from the CMU dataset. In total, 9 action sequences, each representing a single action

class and 144 action sequences for testing were extracted from the HDM05 dataset.



Chapter 5. Exemplar Paradigm and Template Matching 84

Finally, 9 action sequences, each representing a single action class and 108 segmented

action sequences were extracted from the TUM Kitchen dataset. As a pre-processing

task, six joint angles contained within CMU, five from the HDM05 and six from the

TUM datasets consisted of constant values, so they were removed from the training

and testing sequences. Therefore, this reduces model complexity and removes the need

for the approaches to model zero values. The remaining joints had between two and

three DOF. For testing, the conversion process was undertaken on a per pose basis in a

real-time manner.

To assess the performance of the approach, the following experiments were performed.

Firstly, machine learning techniques SVM [141] and RF [144] and ANN were trained for

each approach with a two-folder cross-validation undertaken to fine-tune the algorithms.

Secondly, a comparison using the DTW-based label sequence matching is undertaken.

5.4.2 Recognition

Using the benchmark datasets, defined in Section 5.4.1, the approach has been compared

to those introduced in chapter 4 and these results are summarised in Table 5.1. In addi-

tion, the approach has been compared to state-of-the-art machine learning techniques,

these results are summarised in Table 5.2.

Table 5.1: Exemplar-based template matching. Recognition accuracy and recognition
time (in milliseconds) for each dataset when compared with chapter 4 approaches.

Dataset Proposed Approach DIS (Section 4.2.1) DKPI (Section 4.2.2)
CMU 91.89% (17ms) 89.01% 92.96%

HDM05 97.95% (9ms) 93.19% 94.45%
TUM 93.93% (11ms) 86.29% 91.30%

The desire to perform recognition in real-time is the main contribution of this chapter,

observed in Table 5.1 that recognition has been performed in real-time and all fall under

17ms. The di↵erence in recognition times is, in part, due to the type of datasets and

their dimensionality.

The CMU dataset achieved a recognition rate of 91.89% using the exemplar-based

approach introduced in this chapter. However, this falls behind the proposal in Chapter

4. This may be in part due to only a single action sequence being trained, further, unlike

the DPKI approach, the objective is to perform recognition in real-time. Therefore, the
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delegate representations contained a more generalised representation that may have

impacted the recognition results. The approach was capable of distinguishing between

Walking and Running sequences due to relatively small variation amongst subjects.

However, it was observed, that for sequences such as Boxing and Punching, the temporal

variations caused inter-/intra-class variations which impacted the results. A second set

of experiments was performed, in which state-of-the-art machine learning techniques

were trained using the exemplar model. As can be observed in Table 5.2, each technique

was capable of recognising the human action sequences to a high confidence, yet the

proposed recognition framework has been able to achieve a higher accuracy as it takes

into account prior history.

Table 5.2: Exemplar-based template matching. Recognition accuracy when compared
to state-of-the-art machine learning techniques.

Dataset Proposed Approach SVM RF ANN
CMU 91.89% 78.85% 83.67% 72.84%

HDM05 97.95% 82.45% 86.81% 782̇1%
TUM 93.93% 77.79% 89.28% 79.56%

In the HDM05 dataset, a recognition rate of 97.95% (see Table 5.1) was achieved using

the exemplar-based framework. For the HDM05 dataset, the approach has outperformed

both approaches defined in chapter 4. However, it must be noted that the other two

approaches performed very well. This may be due to the way in which the dataset has

been collected, in a rigid manner resulting in higher recognition results. As with the

CMU dataset, Walking and Running classes were clearly identifiable. However confusion

was observed for Sit and Squat, this may be due to similar poses being performed between

the two classes. To overcome this, a consideration may need to be made to factor

the temporal domain. Tentatively, interclass confusion remained limited reflecting the

strength of the approach to correctly model action sequences using the exemplar-based

paradigm. As can be observed in Table 5.2, each technique was capable of recognising

the human action sequences to a high confidence, however, there is a 12 percentage point

di↵erence between the state-of-the-art and the proposed recognition framework.

Finally, for the TUM dataset, a recognition rate of 93.93% (see Table 5.1) was achieved

using the exemplar-based framework. Using the TUM dataset, the approach outper-

formed, albeit marginally, both approaches introduced in chapter 4. This may be due

to the limited action types within the dataset, with several distinguishably di↵erent

making the recognition process less of a challenge. The actions contained within the
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dataset reflect a kitchen environment, class confusion was observed for those that had

overlapping actions such as placing an item in a high cupboard and placing an item in

a low (floor level) cupboard. Once again, the temporal domain may aid in improving

recognition accuracy further. As can be observed in Table 5.2, each technique was capa-

ble of recognising the human action sequences with several machine learning techniques

obtaining the highest accuracy results.

The approach presented in this chapter was capable of outperforming the current state-

of-the-art, and the approaches proposed in chapter 4. This is significant advance on

current approaches, with the added benefit of being a more straightforward in analysing

highly complex datasets and also the small number of exemplars retained (average k =

15). For recognition in real-time it is important to obtain the classification as quickly as

possible, the approach is capable of providing results in under 17ms, matching several

state-of-the-art real-time techniques.

5.5 Discussion and Conclusions

The exemplar-based template approach for human action recognition appears to support

robust recognition from a number of marker-based MoCap data. Selecting informative

delegates proved to be very important as evidenced by high recognition results. However,

it is important to highlight the class confusion between similar action sequences, which is

widely seen throughout experiments. Nevertheless emphasis is placed on the importance

of selecting ideal actions for representing each action class. Modelling inconsistent,

or incorrect performance of an action could cause a reduction in performance. This

challenge is further discussed in chapter 6.

The use of an action model to represent each action class o↵ers an advantage over tradi-

tional approaches in terms of characterising each class by a small number of exemplars,

which has reduced the need to use whole motion sequences for action representation

by an average of 98%. This in contrast to using full motion sequences to train machine

learning techniques, with performance inevitably su↵ering as the quality of training data

degrades due to confusion. Chapter 4, explores this concept further and extends the use

of feature selection and ranking to improve recognition results for online application.

The use of Exponential Map representation enables characterisation of the posture in a
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more discriminative usable form, but also handles singularities and discontinuities. The

approach presented in this chapter has improved on the approaches defined in chapter

4 and enabled real-time recognition.

For recognition, this chapter has focused on pose classification and template matching

using real number sequences, which has presented a number of challenges. It is di�cult to

distinguish certain actions due to poses being indistinguishable for a periods of time, such

as similar gait cycles between walking and jogging, creating inter-/intra-class confusion.

A solution, proposed by this chapter, is to focus on adjacent poses in the temporal

domain. Focusing on temporal di↵erence aids in identification of the correct action class

as the sequence unfolds.

So far only marker-based approaches to human action recognition have been considered.

Invasive marker-based MoCap have a number of advantages, the placement of markers on

the body allows for accurate and reliable 3D feature extraction with no background sub-

traction requirements. However, they have a number of drawbacks, they are expensive

and only function within a defined area (usually a laboratory). They further require

trained users who post-process the data, manually identify and label markers. This

leads to the following questions: is it feasible and practical to utilise marker-less track-

ing technology for use in feature representation, detection and classification? Chapter

6 presents a feasibility study for the ability of marker-less technology for use in classifi-

cation, specifically focusing on health related tasks. With the concept extended further

for age-related health implications and real world deployment in chapter 7 and chapter

8.



Chapter 6

Feature Representation with

Marker-less MoCap data using

Machine Learning

In this chapter the Microsoft Kinect 360 and the underlying skeletal tracking algorithm

is explored to assess the reliability in a recognition framework. While marker-based

MoCap has clear advantages, one of its major disadvantages is the hardware and

markers which make it di�cult to apply for real world application. Marker-less

technology o↵ers significant advantages in terms of cost and deployable applications.

This chapter extracts the kinematic location, velocity and energy of each skeletal joint

at each time period to form a feature representation. Principle Component Analysis is

applied as a pre-processing step to reduce dimensionality and identify significant

features amongst action classes. The resulting algorithm is demonstrated for

recognition to analyse the ability of machine learning techniques to accurately classify

action sequences.

6.1 Introduction

Thus far, this thesis has focused on marker-based MoCap datasets, and as discussed in

chapter 5, these are expensive and di�cult to deploy for real-time application. Amongst

researchers, there has been a shift towards marker-less technology due to its low cost,

88
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adaptability and accessibility. A detailed discussion is presented in Section 2.2.2. This

section utilises the Microsoft Kinect 360 (Kinect 360), which is a low-cost peripheral

accessory initially released for use with the Xbox 360 gaming console. The Kinect 360

allows for real-time body detection and tracking of human activities and gestures. By

incorporating infra-red and RGB camera technology, the underlying body detection al-

gorithms create a three-dimensional (3D) depth map of the area in front of the device,

randomised decision forest algorithms are then used to automatically detect and deter-

mine anatomical joints on the body of the user and stream the 3D coordinate location

for each joint [24].

This chapter builds upon the shortcomings of Patsadu et al. [157], where the Kinect

360 was evaluated by placing its on the ceiling facing vertically down at the participant.

The conclusions presented in chapter 5 and the limited use of Restricted Boltzmann

Machines [19] to explore the feasibility of using machine learning to perform recognition

on a set of marker-less action sequences captured using a MoCap dataset. This type

of feasibility study, at present, does not exist. While traditional frameworks seek to

recognise gaming action sequences, this thesis intends to analyse human motion for

health-related quantification. A health-related dataset comprising of 10 participants

was recorded using the Kinect 360.

The approach uses skeletal information (see Section 3.1.5 and Section 3.1.1 for a detailed

discussion), obtained from the Kinect 360 to form a feature vector comprising of the

vertical location (y axis), velocity (over time) and energy of each skeleton joint for each

t-th time period. Section 3.2 presents the machine learning techniques employed in this

chapter. Each technique is assessed for the accuracy in which it recognises unseen test

sequences. This chapter provides a feasibility and suitability of using Kinect 360 data

for feature representation and recognition.

The main contributions of this chapter are as follows:

1. Novel feature representation of Kinect 360 skeletal information which represents

the spatial-temporal information and encodes it into a single representation (Sec-

tion 6.2).
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2. Discussion and evaluation for the feasibility of machine learning techniques for

recognising human action sequences using Kinect 360 derived features (Section

6.3).

6.2 Data Capture and Feature Encoding

Thus far, this thesis has focused on marker-based MoCap, which provides angle represen-

tations in Euler Angle form, however marker-less technology such as Kinect 360 provide

Axis-Angle (coordinates), where x extends from the left to right, y indicates vertical

position and z extends in the direction in which the Kinect 360 is facing. The approach

utilises data obtained via the Kinect 360, transforms it into a suitable representation

and trains several machine learning algorithms. The subsection will discuss the basic

principles of the algorithm, and present terminology and methodology important to the

overall framework.

6.2.1 Action Sequences and Data Collection

The data used in this chapter was acquired by Kinect 360 and Kinect for Windows

Software Development Kit [158]. The Kinect 360 acquired the 3D coordinates of 20

fixed anatomical landmarks, as defined by Microsoft Corporation, at a rate of 30Hz. A

visualise representation of a rendered skeleton is presented in Figure 6.1).

The Kinect 360 (tilt 0 degrees) was placed on a tripod at a height of 0.70 meters (m) with

the participant standing 2m from the device in a defined movement area of 0.5m⇥0.5m.

Participants were asked to perform actions periodically (to characterise temporal vari-

ations) within the defined movement area for a 10 second period directly facing the

Kinect 360. These activities were chosen to reflect activities of daily living, as well as

actions a person would perform while undertaking health-related training programs.

These actions are typically used at home, but also in a motor-control rehabilitation set-

ting. In addition, consideration was given to the type of actions being performed and

the possibility that they may produce noisy skeleton data. Participants were asked to

assume a neutral standing pose at the start and end of the activity, in which they stood

still with legs fully extended and arms extended and relaxed by the side of the body.

The aim was to ensure consistency between the training and testing datasets and, to
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Figure 6.1: Visual representation of Kinect human pose and associated joints.

limit the anatomical variance between the participants. A group of twenty participants

(12 men, 8 women) performed a set of ten activities (defined in Table 6.1), resulting in

the capture of 200 sequences with 60,225 frames of skeletal data.

6.2.2 Feature Encoding

There are inherent challenges associated with marker-less technology, a consideration

is the environmental factors, such as occlusion or loss of the skeleton while tracking the

participant. To overcome these challenges, the data used in this chapter was manually

visualised to ensure accurate recording of the MoCap for each actions. No issues were

detected with the data. A row vector of 20 body-joint coordinates represents each frame.

Each action captured is aligned to the “hip-centre” joint to create a coordinate system

relative to the “hip-centre” of the frame. Where the original coordinate Pt

j

of the j-th

joint at time t is subtracted by “hip-centre” Phipcentre

t

of the each corresponding frame,

defined as:
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Table 6.1: Detailed capture protocol and test descriptions for Kinect 360 feasibility analysis.

Test Capture Protocol Instructions or
Constraints

Jump
(maximum
power)

The participant stood with their legs fully extended and
slightly less than shoulder width apart. When instructed,
they produced a counter movement jump by bending at the
knees and then performing a maximal-level jump

Perform a
maximal-e↵ort
jump

Arm Move-
ment

The participant stood with their legs fully extended and
slightly less than shoulder width apart. When instructed,
arms extended along the frontal plane moving to a side-by-
side position

Test terminated
after 10 seconds

Pickup Ob-
ject

The participant stood with their legs fully extended and
slightly less than shoulder width apart. When instructed,
from a standing position bending down to pick up an object
o↵ the floor with the right hand

Test terminated
after 10 seconds

Squats The participant stood with their feet as close together as
possible side-by-side. When instructed, the participant bent
down so that gluteals approximately 10cm o↵ the ground

Test terminated
after 10 seconds

Walk to-
wards
(towards
Kinect)

The participant started from a standing position and walked
forwards in a straight line towards the sensor at their usual
walking speed

Walk at ’usual’
walking speed

Jogging
towards
(towards
Kinect)

The participant started from a standing position and jogged
forwards in a straight line towards the sensor at their usual
jogging speed

Jogging at ’usual’
jogging speed

Bending to
Toes

The participant started from a standing position and bent
forward with there arms extended to touch their toes

Test terminated
after one attempt

Chair Rise The participant started from a seated position. When in-
structed, they had to stand up so that the legs were fully
extended, and then sit down again. This was repeated five
times with the aim to complete five complete stand/seat cy-
cles. The arms were held across the chest so that all of the
power needed to stand and sit was produced by the legs
muscles

Perform five chair
rises as quickly as
possible. Test ter-
minated after 60
seconds.

Upper
Body Twist

The participant started from a standing position, when in-
structed they raised both arms vertically in front of the torso
and twist from left to right

Test terminated
after 10 seconds

Arm
Stretch

The participant started from a standing position, when in-
structed they raised both arms vertically as high as possible

Test terminated
after 10 seconds
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p̂j
t

= pj
t

� phipcentre
t

(6.1)

where P̂ is a set of aligned poses, which represents a local coordinate system. Axis-

angle location, velocity (over time) and energy are representative kinematic features.

An outcome from chapter 5 found that providing temporal information may aid in the

recognition process. Therefore, in this approach they are used to represent the dynamic

variation of each action sequence, observed over time.

The vertical location (y axis) is discriminative compared to horizontal left to right (x)

and forward to backwards directions (z) because intrinsically most motion exhibits some

form of vertical motion. Chapter 4 and chapter 5 highlighted the importance of the

exemplar paradigm and encoding features that contain low dimensionality. Therefore,

y-position (y), y-velocity (v
y

) and energy (e) are computed to form the feature vector

Ft

n

of the n-th joint at time t. The y-position has been extracted to describe the action

in the y-plane. Velocity and energy are computed for each joint position are given as:

Fj

t

= {(y
j,t

, v
y(j,t), ej,t)|vy(j,t) = y

j,t

� y
j,t��

,

e
j,t

= (v2
x(j,t) + v2

y(j,t) + v2
z(j,t))} (6.2)

where y
n,t

is the aligned y-axis in P̂, as shown in Eq.6.1, energy is computed as the sum

of energy in x, y, z of each joint. The velocity v
y

and energy (e) are calculated over the

previous � frames. � is a user defined parameter to allow for increased tolerance for the

joint tracking error presented by the Kinect 360 and any subtle variance that may be

present [27].

6.2.3 Kinematic Reduction and Pre-Processing

Principle Component Analysis (PCA) is applied to the data for each class to reduce

dimensionality of the aligned activity feature vector F further by projecting the data

into a lower-dimensional space. Refer to Section 3.1.8.1 for a detailed description of

PCA functionality. Transposing to low-dimensional feature space provides a number

of benefits, such as reduced computational complexity, stabilisation of data noise and
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improved accuracy. The variance was set as 98%, meaning the retention of the columns

(dimensions) the variance for the projected datasets. This resulted in a projection that

contained 13 (±4) eigenvectors, to represent the entire class. The projected data is

defined as:

S = {(F
n,t

, l
a

)|n = 1, . . . , N, t = 1, . . . , T, l
a

= 1, . . . , L} (6.3)

where F
n,t

is the projected activity feature vector defined in Eq. 6.2 for the j-th joint

at time t and l
a

is the numerical class label for each activity (e.g. Jumping class: 1,

Walking class: 2).

Figure 6.2: Visualisation of three Principal Components representing the features
derived in Eq. 6.2. a) Walking b) Chair Rise. Where PC represents the Principal

Component dimensions.

6.3 Experiments

This section contains action recognition results for detecting health-related motions us-

ing the proposed feature representation technique defined in Section 6.2.1. A brief in-

troduction to the experimental process is presented hereafter, followed by presentation

of the training protocol and experiment results in the subsection. Marker-less MoCap

data collected from the Kinect 360 for use in this chapter represents a large number

of health-related actions that you would find in the health domain. A set of action
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sequences for each motion class are processed to generate the feature representation pre-

sented in Section 6.2.2. By encoding the velocity and energy information the approach

removes subtle variations that machine learning algorithms may attempt to model.

As with other experiments presented in this thesis, to simulate a real world application,

all experiments were conducted on unknown participant actions, meaning that no data

from the participant being tested was included in the training set.

6.3.1 Protocol and Machine Learning

SVM, RF, ANN and GRBM are popular machine learning techniques used in a number

of domains, however in the field of 3D action recognition, GRBM have had limited use

within the action recognition, however it has shown promise in detecting human actions

[6, 7, 159, 160]. In other domains several studies have sought to investigate the perfor-

mance di↵erences in classification confidence of the machine leaning techniques. Nitze

et al. [161] sought to provide a comparison for crop type classification (for agriculture)

by use of image representations of di↵erent crop fields. Statnikov et al. [162] sought

to compare microarray-based cancer diagnosis and prediction based on gene profiling.

Finally, Tang et al. [163] assessed for spam detection based on IP addresses. SVM was

deemed by two of the studies [161, 162] to be the most accurate with its predictions,

with one study finding RF more applicable [163]. Brennan et al. [164] utilised ANN for

assessment of motor control for upper arm function, the authors found ANN provides

string reliable results. A theme apparent in many studies is that SVM was more accurate

due to it being less sensitive to the choice of input parameters than RF and ANN.

In order to assess recognition accuracy, model training and recognition time, the data

was randomly split into two subsets, ten participants formed the training set and the

remaining formed the testing set. With each experiment introducing another participant

from the training set until all the participants were used. By training the classifiers in

this way, the study is able to determine the suitable number of participants for training to

achieve a stable classification rate. In simple terms, experiment 1 included one training

participant per class which was tested against ten testing participants as demonstrated

in Table 6.2.

A detailed description is provided in Section 3.2 for the machine learning techniques

described. To ensure optimal performance of each classifiers, parameter optimisation was
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Table 6.2: Optimum machine learning parameters for each model trained based on
the participant iteration.

x participants/ 2 4 6 8 10
Parameter Support Vector Machines

C 28 28 32 28 30
� 8 8 8 6 6

Random Forests
n
tree

400 700 800 800 800
Artificial Neural Networks

layer 4 4 4 4 4
GRBM (Stacked SVM)

C 12 14 14 14 14
� 4 4 4 4 4

performed as demonstrated in Table 6.2. To enable comparison, the following decisions

were made; an ANN had a set number of layers, set as layer = 2, this was to ensure

cross-validation comparison. A GRBM model was trained and then learnt using an

SVM, this stacked approach is common within the community.

For C and � used in SVM and GRBM, the selection was undertaken according to

the cross-validation method [143]. To perform cross-validation, the training set was

segregated into two subsets of equal size. Then the classifier was trained on one subset

(training data) and accuracy is tested with the introduction of the second subset. The

optimisation process was repeated for each of the possible parameter in exponential steps

for both C and � between 10�4 to 105 and 10�6 to 103 respectively.

In RF, n
tree

represents the number of trees to be generated for RF requires optimisation.

To perform optimisation, the range of trees has been tested with incremental increases

of 100 between 100 up to 1000 trees. The optimised number of trees required for each

experiment are shown in Table 6.2. The results suggest a consistent number of 800 n
tree

was su�cient for training.

6.3.2 Recognition: Confidence in Detection

The use of PCA needs to be validated, the first experiment conducted on the data

illustrated the benefits of using the projected PCA space to train the machine learning

algorithms (Figure 6.4). The comparison between the latent space (Figure 6.3) and

the ambient “projected” space (Figure 6.4) support the use of PCA. Observe that the

accuracy results are generally more confident when PCA is applied than not. It can also
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Figure 6.3: Overall action recognition rate for SVM, RF, ANN and GRBM trained
from an iterative number of participants without using PCA as a dimension reduction

technique.

Figure 6.4: Overall action recognition rate for SVM, RF, ANN and GRBM trained
from an iterative number of participants with using PCA as a dimension reduction

technique.

be observed, that while the number of participants increases, the SD of accuracy error

decreases. This is represented by the SD presented in Figure 6.5.

The standard procedure for calculating SD is the deviation of the average recognition

accuracy for each participant’s actions. Observing Figure 6.5, the deviation of error

reduced, represented by the error bar, for each machine learning technique when par-

ticipants were increased from 1 to 10. Initial findings demonstrate that recognition

accuracy improved and error reduced when the number of participants in the training



Chapter 6. Feature Representation and Recognition 98

Figure 6.5: Action recognition and its standard deviation of accuracy results for each
participant iteration and machine learning technique.

set was incrementally increased (Figure 6.4 & Figure 6.5). Table 6.3 summarises recog-

nition results for each action class. As demonstrated, there is variation between each of

the machine learning techniques with the number of training participants a↵ecting the

average recognition accuracy. RF exhibited the highest average overall accuracy with

85.17%, outperforming the other machine learning techniques. With both SVM and RF,

increasing the number of training participants improved classification accuracy consider-

ably, with SVM and RF having a similar linear increase in accuracy for between 6 to 10

participants. However, ANN and GRBM both had varied accuracy results with respect

to the number of participants. This may indicate that potentially the importance of

data quality for the training process.
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The recognition results fluctuated due to the number of training participants used and

the machine leaning technique employed. Observing the results in Table 6.3, using two,

four and six training participants resulted in low accuracy across the activities, the use

of eight and ten training participants saw a major improvement, and the levelling o↵ in

accuracy across the range of action sequences captured. Yet, for ANN and GRBM the

results varied meaning that this same conclusion cannot be drawn.

Due to anatomical similarities between Upper Body Twist and Arm Movement, class

confusion was observed, with both SVM and RF over classifying Upper Body Twist.

Recognition accuracy di↵ered for two, four and six training participants. For tasks such

as Walking and Arm Stretch both ANN and GRBM demonstrated class confusion, with

the inter-/intra-class variations of the sequences causing the machine learning frame-

works to struggle to correctly identify the correct action class. An example of class

di↵erence between the machine learning techniques is observed in Figure 6.6, this figure

demon rates the class probability for Arm Movement. Observe that RF and SVM both

experience confusion at di↵erent points in the activity sequence for Arm Movement,

this inconsistency is observed throughout the study. However, for eight and ten train-

ing participants the classifiers stabilised, with SVM producing the highest accuracy for

Arm Movement with 92.25% for all activities throughout the study yet for ANN and

GRBM the results fluctuate making it di�cult to make an accurate determination of its

suitability.

Further confusion between Walking and Jogging was encountered due to the similarity

in limb rotation and joint motion. As observed in Table 6.3 and Figure 6.7, recognition

accuracy for the aforementioned actions had a notable di↵erence in recognition accuracy

and confusion for all techniques employed. For each participant iteration increase, SVM

struggled to correctly classify Walking, with an over confidence in Jogging observed. RF

observed a similar over confidence in Jogging, however for both SVM and RF, when ten

training participants were used results were improved and levelled o↵. Throughout all

the trials ANN demonstrated large amounts of variability depending on the number of

training participants, for example Walking had significant confusion throughout, with

varied results. Finally, GRBM performed very well overall, with consistency in several

action classes, however the technique struggled when actions required the analysis of the

temporal domain, such as for Walking and Jogging.
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Figure 6.6: An example class estimate for SVM and RF by a participant performing
Arm Movement. Expected class is 2.

Finally, the Pickup Object action su↵ered consistent misclassification throughout the

experiments. Due to the similarity and overlapping of posture with a number of other

action classes, it was observed to show misclassification for two, four and six training

participants. This should be addressed in future work. To conclude, RF provided the

highest average recognition accuracy for each participant iteration when compared to

the other techniques. However, both ANN and GRBM were a↵ected by the temporal

element, such as it struggled to distinguish between action classes because the context

was not present or understood. The accuracy results changed depending on the number

of training participants and variance observed. Conversely, SVM provided improved

recognition results for several action classes, namely, Arm Movements, Pickup Object,

Chair Rise and Upper Body Twist, with Arm Movements seeing a 7.02% improved

di↵erence on RF.

6.3.3 Computational Model Training and Recognition Rate

SVM overall was the quickest to train, while GRBM took considerably longer, as demon-

strated in Table 6.4. The training time for each machine learning technique was a↵ected

by the number of training participants, data complexity and parameters selected (Table

6.2). With the increase in the number of training participants, it was observed that
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Figure 6.7: Confusion Matrix between action classes for SVM, RF, ANN and GRBM
where 8 participants in the training sets were modelled.

Table 6.4: Computation time for each mode based on incremental increases of the
participant number.

x participants/ 2 4 6 8 10
Classifier Training time [Sec]

SVM 2.381 14.69 30.39 42.24 55.96
RF 5.08 19.35 49.06 79.21 123.17

ANN 10.98 18.42 35.28 50.95 59.73
GRBM 34.87 65.64 80.43 126.42 160.36

training of the techniques became more complex; consequently the training time of the

classifiers tends to increase exponentially.

Average recognition time was significantly reduced to millisecond predictions, when

compared with training time, with GRBM on average performing faster than the other

techniques as demonstrated in Table 6.5. ANN was computationally more expensive

than the others, however the duration for recognition is directly linked to the n
tree

, C, �.
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Table 6.5: Computational time to perform recognition per action sequence.

x participants/ 2 4 6 8 10
Classifier Classification time [Sec]

SVM 0.036 0.07 0.114 0.146 0.179
RF 0.007 0.022 0.031 0.034 0.037

ANN 0.09 0.14 0.27 0.48 0.56
GRBM 0.002 0.013 0.018 0.019 0.022

The average classification time of each action also increased with the introduction of

new participants, albeit on a lower scale (100 up to 300 milliseconds) as demonstrated

in Table 6.5.

6.4 Discussion and Conclusions

The innovation of the Kinect 360 enables real-time HCI through recognition of user’s

gestures and body movements to, for example, control a character or gameplay elements.

However, despite advances in vision-based HCI, the main constraint is machine under-

standing of the gesture, action and behavioural context, which still remains an open and

ambitious problem to solve. Motivated by current limitations, this chapter has focused

on the promising application of the Kinect 360 for analysis of human motion, specif-

ically health-related motions for full-body tracking and gestured-based evaluation by

an intelligent HCI system [26, 165]. Chapter 8 extends the framework of recognition to

include the analysis of human motion in the attempt to detect subtle variations between

participant groups using informative feature representations.

Normalising with the “hip-centre” joint of the first frame, before computing y
n,t

, v
y(n,t), en,t

and applying PCA reduces anatomical di↵erences and aids in improved classification ac-

curacy (see Figure 6.4 and Table 6.5). In addition, the computed y
n,t

, v
y(n,t), en,t is

high-dimensional, containing twenty body joints and while the techniques are capable

of handling high-dimensional data, feature space reduction by PCA has aided in provid-

ing higher accuracy results, improved model training and classification times. PCA has

demonstrated its potential for use in noise reduction and reducing computational rate.

However, complexity of performing PCA may cause problems for future computational

tasks - most notably when attempting to decouple spatial temporal relationships.
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It must be noted that parameter selection, both in terms of C, � for SVM and n
tree

for RF has had an impact on the training and recognition time due to the introduction

of additional complexity (Table 6.2 and Table 6.4). In addition, the number of layers

selected for ANN could also have impacted the result. For SVM, C a↵ected the number of

support vectors, leading to an increase in classification time, whereas RF, n
tree

increased

model training times when a high number of decision trees needed generating. The

requirement to fine-tune these parameters may cause limitations in future work, chapter

8 proposes an approach that moves away from traditional machine algorithms.

The Kinect 360 has sensitivity of joint rotation, with the Kinect 360 designed to detect

activities of a participant who is standing face forward to the Kinect 360, large rotation

could prove di�cult to detect. Recognition between the range of activities was reliable,

even rotation and subtle posture changes between similar activities of Walking and

Jogging could be recognised accurately. The Chair Rise action presented a further

challenge, due to occlusion of the chair and natural limb movement, yet each classifier

was capable of achieving acceptable classification results. Nevertheless, misclassification

was an issue for a number of activities that have similar movements, with both classifiers

finding it di�cult to classify individual frames without any information about past

frames. Finally, while the Kinect 360 is robust in tracking the human body, there are

still issues with robust classification, with multiple poses presenting confusion.

This chapter has explored the use of the Kinect 360 in detecting, tracking and recognising

human motion. It has found that while the Kinect 360 is capable, there are skeletal

tracking issues that need to be overcome. Nevertheless, the skeletal tracking issues are

acceptable for real world deployment. A concern that extends from utilising the Kinect

360 MoCap data is its reliability and accuracy, Chapter 7 explores the possibility of

using the Kinect 360 to detect age-related changes. This research domain has yet to be

explored and remains unresolved; this thesis will present a solution to this challenge by

uniting computer vision and health research.



Chapter 7

Detection of Age-related Changes

between Young and Old

This chapter assessed the ability of the Microsoft Kinect One to detect age-related

changes between the young, athletic old and old adults using a novel digital analysis

framework. This chapter presents typical routines of clinical movements based on

standardised tests such as the Short Physical Performance Battery, Timed-Up-And-Go,

Three-Meter Walk and Balance (e.g. Tinetti [1986]).This chapter has found that the

Microsoft Kinect One and the framework introduced in this chapter is capable of

detecting subtle age-related di↵erences between participant groups. Given the benefits of

this chapter, the Microsoft Kinect One could therefore become a useful tool for

assessing age-related changes in a clinical setting.

7.1 Introduction

Automatic methods for detection, recognition and quantification of human movements

have become more accessible due to increased availability of low-cost multi-modality

marker-less capturing devices. This provides potential to develop applications suitable

for use in healthcare settings to detect problems that participant have in coordination

of movements [14, 167–170]. Chapter 6 introduced the ability to using Kinect 360

for recognising human action. With rapid technological developments, this chapter

utilises the latest version of the Microsoft sensor, the Microsoft Kinect One (Kinect One).

105
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Throughout comparison, the sensor has been found to be far superior to the Kinect 360

sensor, providing a more robust pose estimation and skeleton tracking [170, 171]. Briefly,

the Kinect One provides a higher quality depth map image, which results in a higher

number of tracked joints (Kinect 260 tracks 20 joints whereas the Kinect One tracks

25). In addition, for other data modalities the Kinect One o↵ers further advances such

as audio capability and High Definition RGB images.

Movement problems experienced by a diverse group of participant include slow and

altered gait, di�culties changing from standing-to-sitting or sitting-to-standing, and

balancing. These problems increase the risk of disability and falls that have major con-

sequences for quality of life and healthcare provision. Specialist nursing sta↵, physio-

therapists and geriatricians routinely assess movements using standardised tests such as

the Short Physical Performance Battery (SPPB) [172], Timed-Up-And-Go (TUG) [173],

Three-Meter Walk [174] and Balance (e.g. Tinetti [166]). However, manual-assessments

require trained sta↵ and variations between assessor ratings and experience may cause

problems. Computer-based analysis of these movements can standardise the assessments

and may be more resource-e↵ective. Automated assessment requires algorithms to de-

tect joint angles in di↵erent body segments, stride length and foot positioning, whilst

also accounting for the diversity that exists across populations in terms of body size and

shape.

Depth-sensors have been used several times for the assessment of balance (e.g. [111,

113, 116, 169, 170, 175]) extracting simple gait-based vectors from a skeletal stream to

provide basic stability-based single value scores. Using the Microsoft Kinect for Xbox

360, Zhou et al. [176] showed that detection of the Centre-of-Mass (CoM) was correlated

with standard assessments performed on a force platform. This chapter demonstrates

the use of the Kinect One in a analysis framework for health-related movements such

as balance, walking, sitting and standing from a diverse population of young and older

adults. The movements were based on common clinical assessments used to assess

movements in disease and frailty. This chapter confirms the suitability of the Kinect

One in quantifying movement between young and older populations.

The main contributions of this chapter are as follows:

1. Digitalisation of the Short Physical Performance Battery to enable quantitative
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automatic analysis using maker-less technology free from human subjectiveness

(Section 7.3).

2. Validation of the Microsoft Kinect One ability to detect jump height and Centre-

of-Mass using markrt-based correlation (Section. 7.5.2).

3. The ability of Kinect One to detect age-related changes between di↵erent partici-

pant groups (Section 7.5).

7.2 K3Da: A clinically relevant dataset

Alankus et al. [177] and Wang et al. [14] devised techniques to characterise movements

in stroke and musculoskeletal patients, respectively. However, both utilised publicly

available datasets that were intended for use in gaming populations, restricting their

broader application. Indeed, existing datasets (e.g. [74–76]) were captured for specific

purposes, such as daily living, first person or gestures, principally for use in the enter-

tainment and gaming industries. Currently, none of the available datasets and works

related to health application specifically includes movements based on common clinical

assessments of participant groups and this limits the development of tools for use in

healthcare settings.

Developing systems to automatically detect and classify movements is of great impor-

tance in healthcare, and related applications. For instance, early identification of people

most at risk of deterioration of physical function gives more time for remedial interven-

tions, such as lifestyle or physical rehabilitation, before the impairments are irreversible.

Such systems also give the opportunity for long-term monitoring of participant to ob-

serve e↵ects of illness or ageing or monitor e↵ectiveness of rehabilitation programmes.

While datasets exist to benchmark daily living and gaming actions/activities systems,

according to the literature there does not exist a dataset to provide clinically supported

motion sequences from both the young and elderly using depth sensor technology. In this

section, a new clinically-supported and relevant dataset is established. While a dataset

was captured in chapter 6 is lacks the clinical validity required for many applications

discussed in this thesis.
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7.2.1 Participants and ethical approval

Data collection was approved by the Research Ethics Committee at Manchester Metropoli-

tan University (approval SE121308). All participants gave signed informed consent to

take part in data collection and for their depth and skeleton data to be published. The

sample size was limited by the narrow pool of suitable candidates and volunteers. The

acquisition sessions consisted of 13 tests based on the SPPB [172], TUG [173] and addi-

tional tests of balance and power output. A detailed description can be found in Table

7.1. Fifty-six participants (characteristics shown in Table 7.3) were recruited with a

mean age of 48.2 (SD of 21.5) and minimum/maximum of 18/89 year and a diverse

range of body compositions. The participants were divided into three groups: young;

those aged between 18 and 59; old: those aged 60 or more with no physical training;

athletic old: those who are British Masters’ athletes undertaking at least one session of

training per week (an average of 39.1 years competing in sports).

7.2.2 Data collection and storage

In all data capture, the Kinect One depth sensor was fixed horizontally to a tripod at a

height of 0.7 m and all assessments were confined to within range of the sensor. Room

furniture was removed to ensure maximum visibility and room lighting was standardized.

The participants were provided with a maximum of three attempts to complete each

short task. A countdown timer was created to prompt the participant to start each test

and sessions were recorded and stored automatically.

The Kinect One sensor coupled with the Microsoft Windows Software Development

Kit [158] synchronised capture of depth and skeleton streams at 30 fps. Each data

stream was retrieved and stored in a unique file for each time period with a unique

millisecond timestamp. The raw storage format was selected for the depth stream; the

raw information contains the depth of each pixel in millimetres. The 16-bits of depth

data contain 13 bits for depth and 3 to identify the person-index. A text format was

selected for storing the skeleton information with participants position, pose and relative

depth map coordinates. The pose includes 25 joints and two action states as defined

by Microsoft. This is an improvement on the Kinect 360 that only recorded 20 joint

positions. The participants overall and joint positions are given as x, y and z coordinates
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Table 7.1: Detailed Capture Protocol and Test Descriptions for the K3Da Dataset

Test Capture Protocol Instructions or
Constraints

Balance
(open
eyes)

The participant stood with their feet as close to-
gether as possible side-by-side. They balanced with
their eyes open and arms extended parallel to the
floor

Test terminated af-
ter 10 seconds

Balance
(closed
eyes)

The participant stood with their feet as close to-
gether as possible side-by-side. They balanced with
their eyes closed and arms extended parallel to the
floor

Test terminated af-
ter 10 seconds

Chair
Rise

The participant started from a seated position.
When instructed, they stand up so that the legs were
fully extended, and then sit down again. This was
repeated five times. The arms were held across the
chest so that all of the power needed to stand and
sit was produced by the legs muscles

Perform five chair
rises as quickly as
possible.

Jump
(low
power)

The participant stood with their legs fully extended
and slightly less than shoulder width apart. When
instructed, they produced a counter movement jump
by bending at the knees and then performing a low-
level jump

Perform and low-
level jump

Jump
(max-
imum
power)

The participant stood with their legs fully extended
and slightly less than shoulder width apart. When
instructed, they produced a counter movement jump
by bending at the knees and then performing a
maximal-level jump

Perform a
maximal-e↵ort
jump

One Leg
Balance
(closed
eyes)

When instructed, the participant balanced with one
leg (participant preference) 6 inches o↵ the ground
with their eyes closed and arms extended horizon-
tally

Test terminated af-
ter 10 seconds or
when the second leg
touched the ground

One Leg
Balance
(open
eyes)

When instructed, the participant balanced with one
leg (participant preference) 6 inches o↵ the ground
with their eyes open and arms extended horizontally

Test terminated af-
ter 10 seconds or
when the second leg
touched the ground

Semi
Tandem
Balance

The participant was asked to place one foot behind
the other so that the big toe of the back foot was
touching the side of the heel of the front foot. Their
arms were fully extended horizontally

Test terminated af-
ter 10 seconds

Tandem
Balance

The participant placed one foot directly behind the
other so that the big toe of the back foot was touch-
ing the back heel of the front foot. The arms were
fully extended horizontally

Test terminated af-
ter 10 seconds

Walk
towards
(towards
Kinect)

The participant started from a standing position and
walked forwards in a straight line towards the sensor
at their usual walking speed

Walk at ’usual’
walking speed

Walk
away
(from
Kinect)

The participant started from a standing position very
close to the sensor and walked away from the sensor
in a straight line at their usual walking speed

Walk at ’usual’
walking speed

Timed
Stand Up
and Go

The participant started in a seated position. They
had to rise from the chair, walk 3 meters, turn around
and walk back to sit on the chair again

Walk at ’usual’
walking speed

Hopping The participant was asked to hop with one leg (par-
ticipant preference) on the spot multiple times

Test terminated af-
ter 10 seconds
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in meters, otherwise referred to as MoCap. These positions are also mapped into depth

coordinates. The skeleton data includes a joint tracking state, shown as “tracked”, “not

tracked” and “inferred”.

Depth map and skeletal streams were extracted from the Kinect One data stream while

the participant performed the movements. The Kinect One sensor provided a 512⇥ 424

depth image up to 30 frames-per-second (fps). Skeletal time series consisted of 25 3D

orthogonal (x, y, z) locations. An example representation is shown in Figure 3.2. Frame

data were extracted in real time using the technique of Shotton et al. [3], which is part of

the Microsoft SDK [158]. This resulted in a dataset that comprises of 525 tests from 56

participants. Resulting in over 200,000 frames of depth and skeleton data. An example

of the extracted depth map image and MoCap can be observed in Figure 7.1.

Figure 7.1: Skeleton visualisation: Left-to-right: raw depth image (512 x 424) and a
MoCap skeleton representation (25 tracked joint locations).

The movements captured were designed by healthcare professionals and the data col-

lection sessions were conducted according to standardised protocols (described in Table

7.1). The movements are commonplace and necessary parts of typical daily living, such
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as walking, sitting, standing and balancing. These same movements become problematic

in disabled and in older people, leading to frailty that a↵ects around 9% of the popu-

lation [10]. Thus, the movements derive from common clinical assessments. Due to the

large inter-individual variability in age and physical capabilities, the dataset contains

large motion variation in the skeletal pose. For example, some participants could easily

perform five chair rises very quickly without losing balance or performance, while oth-

ers (mainly older people) experienced a deterioration of their performance throughout

the test. It is also possible to see intra-individual variations where the same subjects

performed the same test more than once, resulting in slight di↵erences in movements

and timings. These features make this dataset a unique addition to publicly available

marker-less datasets and a considerable improvement on that used in chapter 6.

7.3 Kinect Data Extraction, Interpretation and Feature

Representation

The raw axes coordinate data (x, y, z orthogonal coordinates) are su�cient to accu-

rately describe an observed motion. However, as has been presented throughout this

thesis, it is possible to extract and represent descriptive kinematic features to enable a

more informative representation feature to be formed, computation of these descriptive

features are presented hereafter for clarity. The features extracted are based on the

tests presented in Table 7.1, where necessary specific measurements based on the test

are discussed.

Total time is defined as the absolute time taken to perform a test in seconds. This is

defined by the time taken to pass the test or failing to complete the test. Each test has

been manually annotated to define an “end of tests” point and this is used a reference

for computing the total time.

CoM extracted from Kinect One data [116, 168] is vital for identifying age-related

changes. In order to evaluate and measure stability, it is necessary to measure the

movement of the body’s centre-of-motion. The spatial parameter, CoM is derived from

multiple joints of the Kinect One skeletal stream at each time period t to represent the

motion characteristics. Let com be the centre-of-motion at time t computed from three

joints (hip left, hip right, spine) is given by:
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(7.1)

where x̄, ȳ, z̄ is the mean, i is the joint index of frame t and com is the concatenation

of the mean values.

Medial-Lateral (ML) and Anterior-Posterior (AP) movement is the directional movement

along specific axis of motion. Utilising information obtained for the CoM defined above,

movement in ML and AP are characterised as the x and z coordinates axis respectively.

The change in position between consecutive frames is computed and is considered as the

ML and AP directional change over time.

Tests such as Chair Rise, Jump and Walking towards Kinect were represented with

additional features to enable a more descriptive feature representation. These descriptive

features are discussed hereafter for clarity.

The estimation of the number of chair rises per test was undertaken automatically,

enabling greater automation of motion analysis framework. This is undertaken per test

using spectral analysis as follows; for each sequence a number of local peaks in the

data are extracted based on a maximum peak threshold. A local peak is defined as a

data point that are separated by a minimum distance of 20 frames or greater than the

standard sequence mean (computed as: sequence mean + 90%). An inversion of this

process is undertaken to define the starting and end point of each rise. Therefore, the

time taken for each rise is computed.

Walking towards Kinect is represented by an Upper-Body CoM representation. Unlike

other tests in which the CoM is defined as the centre of the hip joints, the shoulders and

the spine (middle) for this test it is defined as the shoulders and the spine (middle) - the

same equation in Eq. 7.1 can be used. This selection allows for a greater understanding

and representation gait characteristics associated with walking. Distance travelled is

computed based on the directional z motion towards the Kinect One that is represented

in meters. A participant is deemed to have “passed” the test if they have been able to
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walk the required 3 meters. Speed is computed based on distance travelled and total

time taken to walk the required distance. Upper body sway, either Medial or Lateral is

computed as follows; the Upper-Body CoM is defined and an average Upper-Body CoM

is computed from the entire sequence. Sway in either direction is computed on a per

frame basis as the di↵erence between the average and the current frame.

Estimating the jump height is defined as the maximum change observed from the y

axis of the CoM with regards to the first frame of the test sequence. Actual height

is obtained by the Leonardo Mechanography force platform (Novotec Medical Group

GmbH, Pforzheim, Germany).

7.4 Statistical Analysis

Participant group data (young, old and athletic old) was compared using a paired Stu-

dents t-test. For a comparison of distance a two-sample equal variance sample t-test was

used. Whereas a comparison between total time for each participant group a two-sample

unequal variance sample t-test was performed. For all statistical comparisons the signif-

icance level was 5% (p < 0.05). To determine the di↵erence between participant groups,

a one-way ANOVA is used to determine whether there are any significant di↵erences

between the means of the three groups.

7.5 Detection of Age-related Change

In this section, the ability of the Kinect One in measuring balance is compared to a force

platform. Then, the performance of the Kinect One in detecting age-related di↵erences

in balance and jump height is presented.

7.5.1 Kinect Sensor Validation

The ability of the Kinect One to identify movements of the CoM during balancing was

validated against measurements taken from a force platform. The results are provided

in Table 7.2. No significant di↵erences were found between the various measurements of
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Table 7.2: Measurement results for validating the Kinect One for Centre-of-Mass
evaluation compared to the Force Platform measurements.

Test Sequence (Measurement) Kinect Sensor (SD) Force Platform (SD) p-value
Two-leg (Open Eyes) (n = 10)

Total Time (s) 10 (0) 9.91 (0.51) 0.637
ML-CoM SD (cm) 0.29 (0.10) 0.52 (0.33) 0.066
AP-CoM SD (cm) 0.40 (0.22) 0.43 (0.15) 0.744

CoM SD (cm) 0.69 (0.22) 0.95 (0.41) 0.131
One-leg (Open Eyes) (n = 10)

Total Time (s) 9.86 (0.40) 9.86 (0.39) 0.978
ML-CoM SD (cm) 0.44 (0.24) 0.61 (0.15) 0.016
AP-CoM SD (cm) 0.49 (0.19) 0.67 (0.18) 0.006

CoM SD (cm) 0.93 (0.40) 1.29 (0.31) 0.005
Artificial Sway (n = 10)

Total Time (s) 9.64 (0.99) 9.85 (0.40) 0.599
ML-CoM SD (cm) 1.37 (0.42) 1.31 (0.15) 0.702
AP-CoM SD (cm) 2.54 (1.17) 2.20 (0.76) 0.508

CoM SD (cm) 3.92 (1.43) 3.52 (0.82) 0.507

balance during normal two-leg standing and during a period of artificial sway in which

the participants deliberately performed large deviations of the CoM.

During the one-leg standing with eyes open, the Kinect One reported movements to be

around 28% smaller than was found using the force platform. The di↵erences in stability

between the two-leg standing and the one leg standing were further compared using the

outcome measurement of CoM SD (which represents the sum of AP and ML movements

to reflect overall stability). The Kinect One showed 35% less stability during one-leg

standing compared with two-leg standing. This di↵erence was very similar to the 36%

less stability during one-leg standing compared with two-leg standing when measured

on the force platform.

It can be observed that in Figure 7.2 that a very strong correlation between jump height

measured by the force platform and by the Kinect One (r2=0.932; P<0.0005). Figure

7.2 shows a Bland-Altman plot that demonstrates very good overall agreement between

the two di↵erent measurements of jump height.
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Figure 7.2: Vertical jump height measured by the force platform and by the Kinect
One.

7.5.2 Use of the Kinect One to Detect Age-related Di↵erences in Bal-

ance and Jump Height

Table 7.3 shows the results from the balance and assessments of physical function in

young, highly active and frail older men and women.
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Everyone was able to complete the full 10 seconds for balance with two legs eyes open,

groups did not di↵er significantly for the amount of AP (p=0.667) but there was a

significant e↵ect of ML movement (p<0.005). There was no significant di↵erence between

the young and athletic old (p=0.299), but old had significantly more AP movements than

both young (p=0.001) and athletic (p<0.005).

When standing in a semi-tandem position there was no di↵erence between groups for to-

tal time (p=0.246), ML-CoM (p<0.0005), AP-CoM (p<0.0005) and CoM SD (p=0.001).

When standing in a tandem position there was no di↵erence between groups for total

time (p=0.385), ML-CoM (p=0.573), AP-CoM (p<0.560) and CoM SD (p=0.579).

There is no di↵erence between the groups total time (p=0.165), ML-CoM (p=0.425),

AP-CoM (p=0.271) and CoM (p=0.381) when standing on one leg with eyes open.

For one leg standing with eyes closed groups di↵ered significantly for total time (p<0.0005),

ML sway (p=0.010), AP sway (p=0.036) and overall sway (p=0.011). Athletic old

(p=0.048) and old (p<0.0005) had significantly less balance time. Old had less standing

time than athletic old (p=0.009). Athletic old (p=0.006) and old (p=0.009) had more

ML sway than young; there was no di↵erence between athletic old and old (p=0.929).

Athletic old (p=0.045) and old (p=0.0.012) had more AP sway than young; there was

no di↵erence between athletic old and old (p=0.462). Consequently, overall movement

di↵ered between both groups of old compared with the young (all: p<0.01) with no

di↵erence between the groups of old (p=0.738).

For the Chair Rise there were no di↵erences between groups for ML movements of

the upper body (p=0.103). A significant di↵erence existed between groups of the AP

and overall movement (both: p<0.0005). Compared with the young, both athletic old

and old had significantly less AP movements and overall movements (all: p<0.0005).

Athletic old and old did not di↵er significantly. There was no di↵erence between the

groups in the total time taken to perform five chair rises (p=0.361), but the standard

deviation of individual standing attempts was significantly di↵erent (p=0.002). The

young and athletic old did not di↵er significantly (p=0.58) but old had higher standard

deviation than young (p=0.001) and higher than athletic old (p=0.004), indicating more

variability in the time taken between standing attempts.
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The Kinect One recorded no significant di↵erence in distance travelled for all groups

(p=0.962). Walking speed di↵ered significantly between groups (p=0.022), as did ML

sway (p=0.002). Walking speed was similar between young and athletic old (p=0.265),

but old walked significantly slower than young participants (p=0.006). There was no

di↵erence between athletic old and old participants (p=0.145). For ML sway when

walking both athletic old (p=0.012) and old participants (p=0.001) had more sway than

young. There was no di↵erence between the groups of old (p=0.508).

7.6 Discussion and Conclusions

This chapter assessed the ability of the Kinect One for detecting age-related di↵erences

between the young, athletic old and old. There was a clear lack of health-relevant

datasets for benchmarking clinical applications. To address this, this chapter introduce

the Kinect 3D active (K3Da) dataset (Section 7.2). The tests include balance, walking

and chair rise, which indicate musculoskeletal function and are relevant to the devel-

opment of frailty, mobility and stability [178]. The introduction of this dataset allows

for benchmarking against clinically relevant scenarios. This removes the need to use

datasets that were not set-up, or lack the necessary clinical protocol and/or accuracy

to be used to assess algorithms associated with human motion analysis techniques in

healthcare. The movements are common place and necessary parts of typical daily liv-

ing, such as walking, sitting, standing and balancing. These same movements become

problematic in those with disabilities and in older people, leading to frailty that a↵ects

around 9% of the population [10]. Due to the large inter-individual variability in age and

physical capabilities, the dataset motions contain large motion variation in the skeletal

pose. For example, some participants could easily perform five chair rises very quickly

without losing balance or performance, while others (mainly older people) experienced

a deterioration of their performance throughout the test.

The Kinect One has enabled new capacities for innovation within the healthcare sector.

In this chapter, the Kinect One has been employed to provide detailed measurements

of clinically relevant motions. These motions such as balance and walking are typi-

cally utilised in a clinical setting to measure stability, mobility and general well-being

of a participant. Standard approaches, such as SPPB [172] provide a single score
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Table 7.3: Computed results across all tests and participant groups using ANOVA test.

Test Sequence (Measurement) Young (n = 15) Athletic Old (n = 15) Old (n = 13) ANOVA p value
Participant Characteristics

Age (years) 25.5 (6.4) 67 (5.2) 74.6 (3.9) -
% male 68 47 50 -
Height 173.2 (8.5) 165.7 (10.1) 170.9 (6.1) -

Body mass 77.1 (16.3) 61 (9.5) 26.4 (5.8) -
Balance (Open Eyes)

Total Time (s) 10 (0) 10 (0) 10 (0) -
ML-CoM SD (cm) 0.27 (0.11) 0.22 (0.09) 0.44 (0.15) 0.001
AP-CoM SD (cm) 0.32 (0.20) 0.38 (0.17) 0.36 (0.21) 0.667

CoM SD (cm) 0.58 (0.23) 0.60 (0.24) 0.81 (0.31) 0.057
Semi-Tandem (Open Eyes)

Total Time (s) 9.64 (1.09) 10 (0) 10 (0) 0.246
ML-CoM SD (cm) 0.29 (0.08) 0.29 (0.11) 0.49 (0.16) 0.001
AP-CoM SD (cm) 0.21 (0.07) 0.28 (0.14) 0.36 (0.14) 0.008

CoM SD (cm) 0.50 (0.12) 0.58 (0.18) 0.86 (.27) 0.001
Tandem (Open Eyes)

Total Time (s) 9.66 (0.96) 10 (0) 9.74 (0.82) 0.408
ML-CoM SD (cm) 0.41 (0.20) 0.30 (0.12) 1.87 (3.86) 0.116
AP-CoM SD (cm) 0.27 (0.11) 0.30 (0.16) 1.33 (1.86) 0.016

CoM SD (cm) 0.68 (0.23) 0.61 (0.20) 3.20 (5.62) 0.060
One-leg Balance (Open Eyes)

Total Time (s) 9.74 (0.72) 9.51 (1.96) 8.47 (2.42) 0.165
ML-CoM SD (cm) 0.28 (0.09) 3.51 (12.72) 3.85 (4.62) 0.425
AP-CoM SD (cm) 0.41 (0.21) 1.56 (3.51) 1.78 (2.12) 0.271

CoM SD (cm) 0.68 (0.25) 5.06 (16.22) 5.63 (6.52) 0.381
One-leg Balance (Closed Eyes)

Total Time (s) 9.47 (1.24) 8.12 (2.96) 5.09 (1.70) 0.001
ML-CoM SD (cm) 1.50 (1.78) 11.93 (14.86) 12.66 (9.10) 0.010
AP-CoM SD (cm) 1.47 (1.16) 5.48 (7.68) 7.07 (5.57) 0.036

CoM SD (cm) 2.97 (2.49) 17.41 (22.08) 19.73 (12.45) 0.011
Chair Rise

Estimated # Chair Rise 4.47 (0.51) 4.94 (0.68) 4.90 (0.31) 0.938
Actual # Chair Rise 5 (0) 4.88 (0.61) 5 (0) 0.608

ML-Upper CoM SD (cm) 1.35 (0.58) 1.15 (0.30) 1.67 (0.90) 0.102
AP-Upper CoM SD (cm) 17.07 (4.60) 8.97 (3.08) 10.83 (3.57) 0.001

CoM SD (cm) 18.42 (4.75) 10.12 (3.22) 12.50 (4.12) 0.001
Time Rise Average (s) 1.43 (0.27) 1.54 (0.23) 1.55 (0.27) 0.361

Time Rise SD (s) 0.53 (0.11) 0.58 (0.42) 0.79 (0.16) 0.002
Walking

Total Time (s) 2.27 (0.52) 2.37 (0.34) 2.64 (0.51) 0.144
Distance Travelled (m) 3.07 (0.27) 3.06 (0.19) 3.04 (0.33) 0.962

Velocity (m/s) 1.41 (0.24) 1.31 (0.17) 1.17 (0.15) 0.021
CoM SD (cm) 2.69 (1.11) 4.83 (2.32) 5.39 (2.36) 0.002

Jump (Maximum Power)
Est Jump Height (cm) 34.47 (6.93) 23.52 (7.71) 21.95 (4.49) 0.002
Act Jump Height (cm) 36 (7.15) 26.47 (7.53) 22.69 (4.73) 0.002
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measurements with no contextual information whereas the Kinect One is able to pro-

vide quantified kinematic information. This information has been extensively utilised

in Kinect-based rehabilitation frameworks such as [177, 179, 180] but yet to be used for

age-related change detection.

This chapter has used the centre-of-mass as a key indicator for detecting age-related

changes. The features extracted were carefully validated against a force platform, which

is typically used in research. No significant di↵erences were found between the various

measurements extracted, with a strong correlation found between the Kinect One and

force platform in jump height. These results demonstrate the suitability of the Kinect

One in detecting motion di↵erences between young and old participant groups.

Under stable balance tests of two-leg (open eyes) and semi tandem (open eyes), all groups

did not di↵er significantly in stability which is consistent of other studies of balance such

as [108, 170, 181]. These results suggest that the Kinect One is not suitable in detecting

subtle stability di↵erences in static balance [168], this hypothesis is supported by validity

of the Kinect One sensor hardware [27]. When the di�culty in balance tests increased

there was a significantly greater amount of postural sway in both ML and AP directions

for the older adults than with the healthy young. For tandem (open eyes) balance greater

movement was identified for old adults, analysis of the test suggests that foot position

in relation to the torso causes stability impairment. The older groups demonstrated

significantly more sway and stability impairment than young for tests related to single

foot balancing (with eyes open or closed). The retest rate for both old groups compared

with young in relation to these tests was 75%.

The older participants, most notably the old participants were very cautious in under-

taking tests that required either speed or a requirement to complete the task within a

specific time frame. Conversely, younger participants were able to undertake tests con-

fidently, even though it reduced stability. For example, in Chair Rise, participants were

asked to perform five repetitions as quickly as possible. While average time per rise and

standard deviation were similar, upper-body stability significantly varied between the

young and old. In this chapter, the results demonstrate that the Kinect One discrimi-

nates well between di↵erent participant groups and is feasible for a clinical environment.

Ejupi et al. [11] further supports the conclusion that the Kinect One device was capable

of detecting subtle changes in a clinical setting for five times chair rise.
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Using features extracted from the Kinect One, balance control during walking in older

adults compared to their younger counterparts are significantly di↵erent for sway and

CoM change. Stability was varied between the young and old, with little di↵erence in

time taken and velocity. This is supported by other studies such as [13, 111]. However,

other researchers have found [12] that older participants exhibited a more conservative

gait patterns, which is characterised by a slower velocity. The inconsistency in results

may in part be due to the Kinect One providing more detailed information of the ob-

served motion.

It can be hypothesised that the use of sensor technology has enabled researchers to

extract motion indicators with relative ease. Older adults exhibited greater medial-

lateral sway in their gait when walking. That said, they are still capable of maintaining

a similar velocity to that observed by the younger participants, in line with other works

[12].

This chapter comprised of data compiled from 56 participants, however, amongst the

population of older people, few of them had serious mobility limitations. Despite this,

there were some very clear di↵erences between young and older people, for example in

balance and walking. The older participants were matched with young participants, yet

using the feature list defined previously has identified di↵erences in motion performance

between the groups. Using marker-less technology, such as the Kinect One can aid in

the quantifiable detection of age-related mobility di↵erences. The framework in this

chapter demonstrated the use of a commercial, low-cost product to provide accurate

motion information and analysis robustly. This work can aid in the development of

software solutions capable of supporting and directing clinical provision to aid mobil-

ity enhancement of the participant. Chapter 8 extends the concepts presented in this

chapter to create a framework that is capable of automatically determining age-related

changes between participant groups.



Chapter 8

Application: Analysis and

Automated Quantification of

Human Mobility

In this chapter, a solution of automated quantitative evaluation of motor-skeletal

control disorders using the Microsoft Kinect One is presented. The application is

divided into two parts. Firstly, the ability to robustly detect a set of standardised tests

(e.g. sit-to-stand, walk 4 meters) from a depth sensor. Secondly, analyse and evaluate

the test sequence to identify the changes in kinematic features by comparing the

mobility of the young and old. This chapter introduces novel analysis and

quantification framework that has proven successful in quantifying human mobility.

8.1 Introduction

In Chapter 7, the problem of detecting age-related changes between the young and old

was discussed. With the population ageing, an important factor in providing health

and social care services is to quantify and continuously assess participant. Frailty is

an indicator of general health and well-being, and is usually assessed by asking the

person to perform several standardised tests (e.g. walk back and forth, sit to stand

which are components of the Short Physical Performance Battery (SPPB) [172]) during

which a clinician observes the activity for stability, duration, coordination and posture

121
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control. Although the person-clinician assessment method is common, there is room

for improvement to construct a more e�cient and reliable framework for the following

reasons [179, 182–185]. First, clinician-led assessment is mostly subjective instead of

objective quantification. Second, clinical scales, such as the SPPB lack objectivity and

correlation when person variance is taken into account. Further, clinicians are required to

interpret the results to make a decision. Third, the entire process can be time consuming

considering the participant need to travel to the appointment, prepare, and undertake

the assessment. Fourth, it is clear that the majority of participants would prefer to

undertake the assessment at home instead of travelling. Fifth, participants may exhibit

di↵erent behaviour as a result of examined which may alter the outcome.

Inspired by the success of [14, 186], there is growing support in the literature which

indicates, if we were able to reliably detect and/or identify a person who has “poor

motor-control”, it can be a predictor of a general decline in health and intervention can

be undertaken [10, 178]. Several attempts have been made to develop home-based mon-

itoring and quantification systems for assessment and rehabilitation [187–189]. While

these systems have been clinically validated and have potential to solve home-based mon-

itoring and quantification task, they fall short of assessing frailty and mobility. Further,

in the majority of cases, these systems provide a single indicator instead of a detailed

analysis, which would provide a more detailed measure to clinicians [185]. In addition,

as highlighted in chapter 7, many of the existing frameworks have been evaluated using

game-orientated datasets, and not clinically supported. This chapter uses the K3Da

dataset introduced in chapter 7 to propose an application framework to monitor, assess

and quantify mobility using depth sensor technology.

This chapter unites human action recognition techniques presented in chapter 5 and

chapter 6 with motion analysis presented in chapter 7 to develop a reliable, accurate

monitoring and evaluation system that is capable of measuring mobility between the

young and old. The system acquires the skeletal stream from a single depth sensor.

The skeletal stream is decomposed into novel joint-group features that are used for

recognition and quantification. A novel framework for evaluating and analysing mobility

to aid in clinical invention is further introduced.

The main contributions of this chapter are as follows:
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1. Proposal of a non-invasive recognition framework using MoCap feature selection

and representation for real-time recognition (Section 8.4).

2. Proposal of a clinically reliable quantification and analysis framework to provide

joint-level feedback indicating the mobility of the participant (Section 8.5).

3. Empirical experimental evaluation and comparison between young and old to ob-

tain quantitative objective outcome measures for recognition and human mobility

(Section 8.6).

8.2 Application Framework

The general framework for the method presented in this chapter is divided into three

main parts. Firstly, feature encoding to provide a rich powerful compact representation

(Section 8.3). Secondly, identification and recognition of human motion (Section 8.4).

Finally, motion analysis and quantification (Section 8.5). The dataset captured and

presented in chapter 7, obtained using a depth sensor with participants performing

standardised clinical tests is used to validate the proposed framework. For clarity, recall

that a Microsoft Kinect One skeleton is represented by a stream of MoCap skeletons,

with up to 25 joints tracked at a rate of 30 frames-per-second (Section 7.2 provides

more detail on the functionality of the Kinect). The sensor is low-cost and able to be

operated in a wide variety of locations, making it ideal for the application presented in

this section.

8.3 Feature Encoding

Identification and recognition of gestures, motions and activities is not a trivial task. In

chapter 6, an evaluation of the ability to detect human action using a Microsoft Kinect

sensor yielded promising results. However, the same feature set would not provide

the abstract level of detail required for in-depth quantitative analysis, evaluation and

outcomes to be determined. This, in part, is due to the inherit way in which actions

between humans di↵ers slightly, making a single top-level feature vector generalised to

a high degree [16, 117]. Rich and informative features have been shown to provide an

improved feature representation for recognition [104, 106, 190, 191]. Du et al. [122]
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proposed a hierarchical recurrent Neural Network for human action recognition, at the

core was the concept of dividing the skeleton into joint groups, based on anatomical

significance to the action sequence. Using this knowledge, a novel joint level group

feature which is informative, representative of multiple action types and capable of

encoding subtle variations is introduced.

Figure 8.1: An illustration of the whole skeleton divided into five joint groups. Each
joint group represents a key motion area which is capable of representing all types of

human motion.

The framework for feature encoding is presented in Table 8.1, and a visual represen-

tation of the joint group decomposition of the skeleton is presented in Figure 8.1. For

recognition, the given joint groups are merged into a single feature vector for training,

whereas for motion analysis each joint group is encoded and modelled individually.

There are multiple measurements that are capable of being extracted from skeletal

stream [110, 142, 191]. This dilemma requires the selection of the most appropriate

features independent of human subjectivity. Specifically, only those features that are

anthropometric, style invariant and can easily and quickly be extracted from the stream

should be utilised. Table 8.1 provides a summary of the joint decompositions plus de-

rived features that form each joint group. Alongside the introduction of new features,

features derived from the MoCap data itself are also provided. Specifically, the x and

y are extracted for each joint to describe the posture in MoCap coordinates [104]. Fur-

ther, several of the features mentioned in Table 8.1 have been discussed previously in

this thesis, for clarity a summary is provided.
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Table 8.1: Summary of joint decompositions and derived features that form joint
group representations and the corresponding dimensionality of the final feature vector.

Joint Group Features Length Notation
(where I is
the number
of features)

Left Arm
(LeftShoulder,
LeftElbow,
LeftWrist,
LeftHand)

Left arm Euler Angle (between left
shoulder and left wrist), Euclidean
distance between the left shoulder
and left hand, x and y axis vectors.

10 F
LeftArm

=
{1 . . . , I}

Left Leg
(LeftHip,
LeftKnee,
LeftAnkle,
LeftFoot)

Left leg Euler Angle (between left
hip and left ankle), Euclidean dis-
tance between the left hip and left
foot, x and y axis vectors.

10 F
LeftLeg

=
{1 . . . , I}

Right Arm
(RightShoulder,
RightElbow,
RightWrist,
RightHand)

Right arm Euler Angle (between
right shoulder and right wrist), Eu-
clidean distance between the right
shoulder and right hand, x and y
axis vectors.

10 F
RightArm

=
{1 . . . , I}

Right Leg
(RightHip,
RightKnee,
RightAnkle,
RightFoot)

Right leg Euler Angle (between
right hip and right ankle), Euclidean
distance between the right hip and
right foot, x and y axis vectors.

10 F
RightLeg

=
{1 . . . , I}

Torso
(SpineBase,
SpineMid,
Neck, Head,
SpineShoulder)

Torso Euler angle (between the
spin base and neck) relative to the
body, Euclidean distance between
the spine base and head, Body lean
angle (relative to the floor with
torso as a reference), Centre-of-
Mass (between left shoulder, right
shoulder, spine mid), x and y axis
vectors.

16 F
Torso

=
{1 . . . , I}

Euler Angle: Recall in chapter 3, that any rigid body can be described as some angle

around three mutually orthogonal coordinates in fixed space. However, obtaining Euler

Angles from marker-less MoCap is di�cult. The Euler Angle is useful as it provides a

subject invariant feature that is indiscriminate to body size or performance style. The

Euler Angle between a set of joints (reference joints provided in Table 8.1) is computed

by calculating the Coordinate Matrix (other known as the Rotation Matrix), discussed

in Section 3.1.4, and performing Euler transformation into Euclidean 3-space (R3) [192].

Euclidean Distance: An important characteristic of human motion is the way in which
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the participant transitions over time in relation to a fixed point. For example, in the

torso group, the Euclidean distance is computed between the base of the spine and head.

While this value will remain stable for actions such as walking, when the participant

performs a bend, or sit-to-stand motion the distance between the two joints di↵ers. This

change in distance is modelled by the Euclidean distance between joint features. The

Euclidean distance between each reference joint is defined as:

distance =
p

(x1 � x2)2 + (y1 � y2)2 + (z1 � z2)2 (8.1)

where x1, y1, z1 and x2, y2, z2 are the respective joint locations.

Figure 8.2: Visual representation of the body lean angle in relation to the Microsoft
Kinect sensor. The angle is computed by the intersection between the ground plane

and spine on the skeleton.

Body Lean Angle: Recall in chapter 3, that it is possible to represent an SO(3),

which is a rotation in Euclidean space as a pair of vectors (unit vector ê indicating the

direction of the axis rotation, and an angle ✓ representing the magnitude of rotation

about the axis). The body lean angle represents the body orientation in relation to the

ground plane, see Figure 8.2 for a visual representation. The angle is computed by the

flexion of the spine in relation to ground floor plane, defined at the centre of the feet.

The lean angle between the spine and the floor is defined as:

✓ = arccos

✓
S ·Q
kSkQk

◆
t

(8.2)
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where S is the spine vector (x, y, z) and Q is the floor vector - the middle of the feet

(x, y, z).

Centre-of-Mass: The CoM is computed for the torso, extracted from Kinect One data,

describes the directional movement of the participant. Figure 8.3 demonstrates a visual

example for the CoM for two specific action sequences. Subtle direction movements,

such as Chair Rise (see Figure 8.3), are identified by the Kinect One due to its ability

to track millimetre postural changes [3]. Chapter 7 introduced the CoM feature, and

provides further discussion on the computational process (Eq. 7.1). However, a key

outcome from the chapter, supported by the literature [27, 116, 168], is the ability of the

Kinect One to robustly and with significance capable of tracking the CoM accurately.

8.4 Recognition: Motion Identification

The general framework for recognising tests is shown in Figure 8.4, which is derived

from the contributions presented in chapter 4 and chapter 5. The framework presented

in the Figure 8.4 is split into two aspects: o✏ine training of multiple state-of-the-art

machine learning techniques based on an exemplar-based pose selection. Online detec-

tion and identification of motions in real-time to provide motion analysis. While the

skeleton stream can be an informative representation (as found in chapter 6), the fea-

tures presented in Section 8.3 are used instead of the MoCap skeleton. The recognition

framework is presented hereafter.

8.4.1 Feature Reduction and Selection

This section describes the feature ranking and selection-based method used to classify

actions (tests) from Kinect One MoCap (visualised in Figure 8.4). For generalisation

and consistency, let P be the set of all skeletal poses, ordered in a time sequential

manner. The human skeleton obtained from the Kinect One is descriptive, however

as discovered throughout this thesis it lacks the depiction of the integral details of the

motion. To overcome this, the skeleton is encoded with the features summarised in Table

8.1. Then, all actions that belong to the action class are grouped, based on an automatic

k-means clustering technique. This top-level clustering process generates a generalised

k which is an atypical representation of the action phases. With this knowledge, the
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Figure 8.3: Visual representation of the Centre-of-Mass. a) Example of the Centre-
of-Mass (y) for Chair Rise. b) Example of the Centre-of-Mass (y) for Jump.

feature encoding for a single action sequence is recovered. Then, a sub-level k-means

is performed to group the features. To finalise the framework, firstly key clusters are

identified and retained. Secondly, within those key clusters features are identified and

selected based on their informative representation to the cluster using a novel equivalence

function.

The encoding of P is performed as described previously. Each feature encodes a specific
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Figure 8.4: Recognition Overview: An overview of the recognition framework. The
top row illustrates the training process to training state-of-the-art machine learning
techniques. The bottom row illustrates the online recognition process utilised to per-

form classification of a motion.

motion type, such as gait, or action style. To train any machine learning, a unified

training sample needs to be formed. Therefore, the features for each joint group are

concatenated together, given as:

F̂ = {F
LeftArm

, F
LeftLeg

, F
RightArm

, F
RightLeg

, F
Torso

} 2 R56 (8.3)

where F̂ is a combined vector consisting of the features derived for each joint group.

The main objective is to identify and extract only those features that provide the most

information about the action (motion). To this end, a two tier clustering process (See

Section 3.1.7) is undertaken, presented in Algorithm 1. Top-level clustering process

combines each feature encoding for each action into a single matrix. An automated

clustering approach is then employed to identify the optimum number of clusters. With

this knowledge, a sub-level clustering is undertaken on each feature group with the

derived optimum clusters. Therefore, for a feature group F̂ is represented by k clusters.
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Algorithm 1: Automatic k selection and grouping with k -means clustering

Input: A
x

= {F̂1, F̂2 . . . , F̂N

} - training instances for all F̂
n

in the action class in
concatenated form
MaxIt - maximum number of convergence iterations

Output: L = {l(e)|1, 2, . . . , E} - set of cluster associate labels for F̂
n

For a set of features x 2 A do
foreach k = 2 : N do

randomly initialize k centroid location, C
i

, for each cluster
foreach a

i

2 A do
l(e) argminDist||a

x

� c
i

||2, i 2 {1, . . . , k}
end
it 0
repeat

foreach a
x

2 A do
minDist argminDist||a

x

� c
i

||2, i 2 {1, . . . , k};
if minDist 6= l(e) then

l(e
n

) minDist
end

end
it++;

until it MaxIt;
wcss

k

 argminDist||A
n̂

� C
i

||2, i 2 {1, . . . , I}
end
est

k

= E⇤
I

{log(wcss
k

)}� log(wcss
k

)}
then
foreach F̂

n

2 A do
randomly initialize est

k

centroid location, C
i

, for each cluster
do classify F

n

samples according to nearest C
i

recompute C
i

until no change in C
i

end
return cluster identifications for each feature (n)

end

After the clusters have been identified, the next stage is to identify and extract key

features. A product of the clustering process is k, but because of the dynamic process

of clustering, they could contain only a few relevant features. Therefore, only those

clusters that contain a number of poses are identified as “key clusters”, and key features

are only extracted from these clusters. A “key” cluster is identified if it contains more

than N/K, the average size of the clusters. For each “key” cluster, the key features

are those that are the most representative and informative, this is determined by an

equivalence function that will be presented hereafter.

The similarity between two features, a and b from F̂ is computed as:
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Similarity(F̂
a

, F̂
b

) = min ||a
i

� b
j

||2 (8.4)

A Self-Similarity Matrix S for a “key” cluster KC from F̂ can be computed using Eq.

8.4 and defined as:

S := (s
i,j

)
NzxNz = {Similarity(F̂

i

, F̂
j

)}
NzxNz 2 KC (8.5)

where S is the computed Similarity-Matrix with a dimensionality of N
z

xN
z

for a cluster

KC. The Self-Similarity Matrix provides an insight into the relation between features,

it is now possible to rank and extract those features that are the most informative.

The median element of the Similarity-Matrix S
median

is selected, and a cost function

is defined to identify those features that are within a threshold, denoted as hold are

retained. This is computed as:

D(S
median

, S
i

) = hold ⌦
IX

i=1

||S
median

� S
i

||2 (8.6)

where i 2 I = {1, 2, . . . , I} is the number of poses for the key cluster and D are those

features that fall within the threshold hold. This results in the extraction of only those

features that are informative and representative of the key clusters. Furthermore, this

provides a more compact representation than the original feature.

8.4.2 Recognition

For recognition, machine learning techniques are employed, see Section 8.6 for the exper-

imental protocol. For training, each action class is represented by a set of key clusters,

derived from each motion associated with the class. These are modelled using machine

learning. To classify and identify the action, the skeletal stream in real time is encoded

using the features summarised in Table 8.1. These for each time period, they are passed

to the machine learning approach to determine the associated class.
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8.5 Motion Analysis and Evaluation

The general framework for analysing human mobility is presented in Figure 8.5, which is

supported by the clinical validation presented in chapter 7. The framework is split into

two aspects. Firstly, the data is assigned a ground truth marker identifying if it contains

“good” or “poor” mobility, then multiple SVM’s are trained to detect mobility changes

based on joint groups. Secondly, detection, identification and analysis of participants

mobility is given with clinically supportive outcomes. While the skeleton stream can be

an informative representation (as found in chapter 6), the features presented in Section

8.3 are used instead of the MoCap skeleton. The motion analysis and mobility framework

is discussed hereafter.

Figure 8.5: Motion Analysis Overview: An overview of the analysis framework. The
top row illustrates the process undertaken to label, group and train a set of SVM
models. The bottom row illustrates the quantification and analysis approach utilised

to provide clinically supportive feedback.

The framework for feature encoding is presented in Table 8.1, and a visual represen-

tation of the joint group decomposition of the skeleton is presented in Figure 8.1. For

recognition, the given joint groups are merged into a single feature vector for training,

whereas for motion analysis each joint group is trained into a separate model. There is

a dilemma in which features to retain to enable e�cient mobility representation. For
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motion analysis, only those features that are anthropometric, style relevant and contain

directional movement should be extracted and utilised. Table 8.1 provides a summary of

the joint decompositions and derived features that form each joint group. Further, Sec-

tion 8.3 provides a detailed explanation for computing these features, and their relevance

to action representation.

8.5.1 Labelling and Computation of Human Mobility Score

For a typical recognition task, prior knowledge of the class label is required. This is

usually very straight forward to determine, for example a person walking or jumping

can easily be defined with a single label [139]. However, the task becomes very di�cult

to identify and label in the context of di↵erent styles of the same motion. For example,

attempting to group di↵erent types of gait manually can result in subjective grouping

and bias [113, 128, 171]. There have been several approaches proposed to obtain clin-

ically supportive outcomes, yet they have been manually annotated with no clinically

supportive reasoning for how labelling was undertaken [14, 16, 128]. On the other hand,

in the clinical literature there are methods for objectively identifying human motion.

Baumgartner et al. [193] introduced a normal distribution of motion values to derive

the SD of the mean as a way for defining groups of sarcopenia (loss of muscle mass with

ageing). This methodology has been used extensively within the medical community

[184, 194], yet to the authors’ knowledge it has not been utilised within the computer

science community as a form of labelling.

In this section, the methodology proposed in Baumgartner et al. [193] is used to define

“good” and “poor” mobility using a novel digitalised labelling framework. This frame-

work is free from human interpretation, bias or subjectiveness. The labelling can be

summarised as follows: Those frames that contain a value greater than the ± 1.5 SD of

the mean are identified as “poor” mobility’, whereas those within ± 1.5 SD of the mean

are identified as “good” mobility. In [193], ± 2 SD from the mean was used to identify

groups, however in this chapter a ± 1.5 SD from the mean has been selected to represent

the limited data sample used for evaluation. Each joint group (and associated features)

is labelled individually. Meaning, that for each joint group, of each motion, each frame

is labelled as having “good” mobility or “poor” mobility. The labelling is summarised

as follows:
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1. Using only young tests, for each action class, each joint group is combined into

a single matrix. This results in five matrices representing each joint group of the

class.

2. The ± 1.5 SD from the mean is computed for each joint group.

3. Using the SD of the mean values computed at item 2, all tests including young

and old are labelled for each joint group.

4. Those frames that that are within the ± 1.5 SD are labelled as having “good”

mobility.

5. Those frames that lie greater than ± 1.5 SD are labelled as having “poor” mobility.

Which presents is a concern in relation to the mobility observed.

The mean ± 1.5 SD threshold value are computed from the young only, to represent

the general population. As this work seeks to identify mobility, using the elderly may

create a bias within the model and increase the rate of false positives. Table 8.2 provides

a summary for the number of frames labelled as having “good” or “poor” mobility for

each participant group.

Table 8.2: Summary of associated frame labels assigned for “good mobility” and
“poor mobility” for each joint group for the young and old.

Joint Group Young Old
Good (%) Poor (%) Good (%) Poor (%)

Left Arm 31,382 (87) 4,131 (13) 12,516 (51) 12,851 (49)
Right Arm 32,145 (84) 5,146 (16) 13,728 (54) 11,639 (46)
Left Leg 30,367 (89) 3,368 (11) 18,089 (60) 7,278 (40)
Right Leg 31,344 (87) 4,169 (13) 19,725 (72) 5,642 (28)
Torso 31,355 (87) 4,158 (13) 16,089 (57) 9,278 (43)

The labelling of each frame of a motion provides an overview of the state of mobility

for the participant performing the motion; this section introduces a “mobility score”

metric. This metric indicates the level of mobility the participant has compared to the

population and computed using the number of frames identified as having “good” and

“poor mobility”. The mobility score is an aggregate of the number of frames identified as

“good” mobility versus “poor” mobility for each joint group, the final score the average

of all joint group scores.

Automated labelling enables a ground truth to be derived from the data itself, free

from human interpretation or subjectiveness. Furthermore, computing the mobility
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score provides another insight to the state of mobility for each participant. Using this

information, it is possible to quantify human mobility and validate it using the ground

truth-values obtained in this section.

8.5.2 Analysing Mobility using Multiple SVMs

Throughout this thesis, a number of machine learning techniques have been utilised.

Consistently throughout these experiments, SVM have yielded consistently high accu-

racy results and they are computationally less expensive to train, and provides a low

latency for classification (see Section 6.3). The objective of this chapter is to provide

detailed insights into the level of mobility of a test participant. To that end, a sample

of the dataset is extracted, and each joint group is modelled using an SVM with 10-fold

cross-validation, Figure 8.6 demonstrates the training and evaluation pipeline. While

it is possible to train a single SVM, indeed chapter 6 obtained high accuracy results

for the task of recognition, however these approaches model subtle motion variations

resulting in over generalisation (over fitting) leading to inter-/intra-class confusion be-

tween “good” mobility and “poor” mobility. Training an individual SVM for each joint

group enables the modelling of subtle changes in motion, providing a greater contextual

understanding, which leads to improved classification accuracy. Furthermore, it enables

the framework to identify specific joint groups that may be of concern.

To obtain an outcome, test data is decomposed into the feature set defined in Table

8.1 and fed into the corresponding SVM. Each corresponding SVM provides a feature-

level classification of “good” mobility or “poor” mobility, detailing the level of mobility

being observed. Using this classification, detailed analysis of the motion is undertaken,

resulting in a decision of level of mobility being observed, Figure 8.7 demonstrates a

sample output from the framework.

For sample output observed in Figure 8.7, the level of mobility is determined at a group

level. Each joint group is assessed based on the number frames classified as having

“good” mobility or “poor” mobility. If any joint group has more than a predefined

number of frames labelled as “poor” mobility, an outcome is generated highlighting that

further investigation is required. In this example, the Left Leg has been highlighted as a

concern. This is due to 43% of the frames in this group being identified as having poor

mobility. Otherwise, if the joint group is below the threshold, such as Left Arm, Right
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Figure 8.6: Summary of the training and evaluation (testing) approach for analysing
and evaluating human mobility.

Figure 8.7: Example output from the proposed mobility analysis framework.

Arm, Right Leg, Torso, the joint group is noted as having acceptable - meaning that no

mobility issues have been detected. The Mobility Score provides a snapshot, single-level

value that quantifies the overall level of mobility the participant has (for an observed

test).

8.6 Experimental: Motion Detection and Quantification

This section presents the quantitative in-depth analysis of the proposed framework for

real-world detection and analysis to support mobility-related clinical outcome measures.

The evaluation of the framework is decomposed into two tasks; Firstly, Section 8.6.1
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evaluates the ability of the framework to robustly perform action recognition. Secondly,

Section 8.6.2 evaluates the ability of the framework to detect age-related mobility con-

cerns. As a consistent theme throughout this thesis, the evaluation is performed on

“unseen” test sequences, meaning that no test data has been “seen” by the modelling.

A number of standardised test scenarios for assessing mobility were proposed in Section

7.2 (see Table 7.1), as part of the K3Da dataset, which have been clinically validated.

In this work, eight tests scenarios have been selected for the focus of this evaluation,

namely; balance (eyes open), chair rise, semi-tandem balance, tandem balance, walk (4

meters).

8.6.1 Evaluation: Motion Detection

Figure 8.8: Visual representation of the motion detection and recognition rate for
each technique across all iterations.

In order to assess the validity of the feature representation framework, a large number

of state-of-the-art machine learning techniques were employed for motion detection and

recognition. These techniques, along with required parameters and parameter selection

methodology are presented in Table 8.3. For each technique, a 10-fold cross-validation

using leave-one-out was implemented to compute the recognition results. Table 8.4

and Figure 8.8 show the results from using each machine learning technique for motion

detection and recognition.

Each machine learning technique was capable of obtaining acceptable recognition rates

(see Figure 8.8), most notably when factoring in the similarity in motions and the

variations contained within the motion. Overall Bagging produced the highest average

recognition rate of 86.88% with ANN producing the lowest average result of 72.25%.
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Table 8.3: Summary of the machine learning techniques utilised to validation the
recognition framework, including parameter selection approach.

Machine Learning Parameters
Required

Parameters Selection

Support Vector
Machines [141]

C and � Parameter selection undertaken to cross-
validation method to determine required
parameters [143].

Random Forests
[144]

n
tree

and
m

try

The number of trees, n
tree

was set at a default
of 2000, and m

try

set at a default of 3.
Artificial Neural
Networks [144]

n
layer

The number of layers, n
layer

was set to a default
of 2.

Gaussian Re-
stricted Boltz-
mann Machines
[19]

h
variable

The number of hidden units, h
variable

was set at
a default of 500.

Adaptive Boost-
ing [195]

N/A Default Matlab parameters.

LPBoost [196] N/A Default Matlab parameters.
RUSBoost [197] N/A Default Matlab parameters.
Total Boost [198] N/A Default Matlab parameters.
Bagging [146] N/A Default Matlab parameters.

The motion detection and recognition results presented in Table 8.4 fluctuated due to

the leave-one-out validation framework, and the machine learning technique employed.

Robustly, across the spectrum of results, motion detection of specific tests, such as

semi-tandem and tandem balance, were high, with little inter-/intra-class variation.

Low motion detection and recognition rates were observed for several iterations (see

Table 8.4), this may be due, in part, to the formation of the training and testing sets for

the specific iteration. Or, cross-validation and parameter selection may have struggled

due to inter-class similarity. However, overall it is clearly demonstrated that several

of the state-of-the-art techniques for motion detection and recognition performs very

well on the K3Da motions encoded using the feature representation and recognition

framework presented in Section 8.4. Another consideration is the time in which is

takes to perform motion detection, across all iterations an average recognition per frame

was below 1ms, it is clear that real-time recognition is viable based on the framework

introduced in this chapter. Being able to correctly identify a motion is of critically

important to ensure the correct model is applied for motion analysis and quantification.
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8.6.2 Experimental: Motion Analysis

This section presents the ability of the proposed framework to detect mobility concerns

between a group of participants using the framework presented in Section 8.5. It is

incredibly di�cult to assign a classification to identify clinical motions, however Section

8.5.1 provides a methodology for identifying ground-truth labels. These ground-truths

are used throughout this section to evaluate the proposed framework for the task of

detecting mobility issues across the participant range. Figure 8.9 provides an overview

for the accuracy of the overall framework in identifying features of concern in relation

to the ground-truths.

Figure 8.9: Visual representation of the motion mobility evaluation compared to
ground-truth labels.

For evaluation, random samples of participants are selected, a portion is used for training

and the remainder used for testing (80/20 split). The success of the framework is

presented hereafter. Observe that across all the clinical tests assessed, a high true-

positive rate is obtained. This indicates that the framework is capable of correctly

identifying mobility concerns, in relation to the ground truths.

Balance - Two Legs (Eyes Open): The framework was capable of detecting if a par-

ticipant required any intervention based on ground-truth labels. Table 8.5 provides an

overview of the confusion matrix for each joint group. Each joint group could be correctly

identified, with only Left Leg providing the lowest “accuracy” of 96.23%. The framework

was also capable of detecting large amounts of mobility concern, most notably in the

Left Arm for individual features. Additional analysis demonstrates the success of the
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framework with a sensitivity of 0.99, a specificity of 0.96 and a Matthews Correlation

Coe�cient (MCC) of 0.96. Overall mobility was in line with expectations, with the

framework performing reliably across all joint groups using the multiple measurements

of accuracy, sensitivity, specificity and MCC.

Chair Rise: The framework was capable of detecting if a participant required any inter-

vention based on ground-truth labels, Table 8.6 provides an overview of the confusion

for each joint group. Each joint group could be correctly identified, with only Left Leg

providing the lowest “accuracy” of 98.38%. Further analysis yielded promising results,

with a sensitivity of 0.99, specificity of 0.96 and an MCC of 0.96. Overall, mobility

across the participant range was good, with only a minority of features falsely classified

as having “concern” across the joint groups.

Semi-Tandem Balance: The framework was capable of detecting if a participant required

any intervention based on ground-truth labels, Table 8.7 provides an overview of the

confusion for each joint group. Each joint group could be correctly identified, with

only Right Arm providing the lowest “accuracy” of 86.60%. A large number of features

were identified as having a “concern” in Right Arm; this may be due to the incorrect

classification of features. This false classification is furthered observed with a relatively

low sensitivity of 0.95, a specificity of 0.99 and a MCC of 0.91.

Tandem Balance: The framework was capable of detecting if a participant required any

intervention based on ground-truth labels, Table 8.8 provides an overview of the confu-

sion rate for each joint group. Each joint group could be as being correctly identified,

with only Left Arm providing the lowest “accuracy” of 96.69%. For Right Leg, all fea-

tures were classified correctly being of good health. This also may be in part due to

most participants using their left leg for the tandem balance resulting in the sensor being

obscured; therefore the Right Joint Group may be obscured for duration of the motion.

Furthermore, a number of features for Right Arm were also misclassified, this may be

due to the subtlety of the motion. A high sensitivity of 0.99 was achieved, however low

scores for specificity of 0.91 and MCC of 0.92 support the confusion that for this type

of balance is can be di�cult to obtain a correct classification.

Walk (4 meters): The framework was capable of detecting if a participant required

any intervention based on ground-truth labels, Table 8.9 provides an overview of the

confusion rate for each joint group. Each joint group could be correctly identified,
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with only Right Arm providing the lowest “accuracy” of 98.10%. Across the Joint

Groups, features were classified correctly, with only a few features being identified as

a concern requiring further invention, this was further supported with a sensitivity of

0.99. However, when considering specificity of 0.94 and a MCC of 0.95, the framework

does yield low results for this type of test when compared to the others.

With the proposed framework we have implemented a framework to identify any clinical

intervention. A threshold of 70% was selected through experimentation, if a participant

joint group contain more than 70% of frames classified as “concern” it would be iden-

tified as requiring investigation by a clinical professional. Of the participants used in

these experiments, 16 were highlighted as having at least one joint group of concern.

In accuracy terms, this is a 94% success rate in detecting mobility concerns between

participant groups.

8.7 Discussion and Conclusion

With the Kinect One, it has enabled new capacities for innovation within the healthcare

sector. The ability to deploy the sensor in a wide range of locations, as well as its low-cost

are important highlights. Further, the Kinect One has provided detailed measurements

of clinically relevant motions and features. Standard approaches, such as SPPB [172]

provide a single score measurements with no contextual information whereas the Kinect

One is able to provide finite kinematic information. This information has been exten-

sively utilised in Kinect-based rehabilitation frameworks such as [177, 179, 180] but yet

to be used for mobility evaluation, analysis and quantification. The extraction of joint

groups provides an abstract level of detail and insights to how the joint group is operat-

ing in relation to the motion as a whole, this leads to an improved insight for clinicians

to make a recommendation.

While analysis is an important aspect of this work, it is important to highlight the

importance of detecting motions as they occur to ensuring the correct outcome measure.

Several state-of-the-art machine learning techniques have been computed, presenting a

detailed summary of their ability to recognise the motions. They have all done incredibly

well at detecting subtle di↵erences between action classes, for example semi-tandem and
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tandem balance. The features have shown to be the main factor in enabling improved

recognition features on a novel clinical dataset.

The data used in this chapter is derived from the K3Da dataset, but it does contain

only a limited number of participants. If the number of participants increase in size, a

more reliable and representative population model can be computed.

This chapter proposes an application framework which unites human action recogni-

tion techniques presented in chapter 5 and chapter 6 with motion analysis presented

in chapter 7. The framework has been shown to be reliable, accurate at monitoring

and evaluation mobility between the young and old. By utilising low-cost depth sensor

technology the application framework is deployable in a large number of scenarios and

environments, resulting in real world practical benefits.
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Table 8.5: Balance - Two Legs (Eyes Open): Confusion matrix highlighting the
performance of the framework for each joint group in identifying motor control groups
of concern by an SVM per feature (pose in time). Where true positive indicates health
participants with good mobility and true negative indicates participants with mobility

of concern.
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Table 8.6: Chair Rise: Confusion matrix highlighting the performance of the frame-
work for each joint group in identifying motor control groups of concern by an SVM
per feature (pose in time). Where true positive indicates health participants with good

mobility and true negative indicates participants with mobility of concern.
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Table 8.7: Semi-Tandem Balance: Confusion matrix highlighting the performance of
the framework for each joint group in identifying motor control groups of concern by
an SVM per feature (pose in time). Where true positive indicates health participants
with good mobility and true negative indicates participants with mobility of concern.
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Table 8.8: Tandem Balance: Confusion matrix highlighting the performance of the
framework for each joint group in identifying motor control groups of concern by an
SVM per feature (pose in time). Where true positive indicates health participants with

good mobility and true negative indicates participants with mobility of concern.
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Table 8.9: Walk (4 meters): Confusion matrix highlighting the performance of the
framework for each joint group in identifying motor control groups of concern by an
SVM per feature (pose in time). Where true positive indicates health participants with

good mobility and true negative indicates participants with mobility of concern.



Chapter 9

Conclusions

In this thesis a number of methods have been proposed for human action recognition,

motion analysis and quantification. In this chapter, the contributions introduced

throughout this thesis are presented, reviewed and future work proposed.

9.1 Feature Selection, Representation and Recognition

In chapter 4, chapter 5 and chapter 8, methods for representing, ranking and selecting

marker-based and marker-less MoCap are described. The approaches seek to generate

e�cient representation to provide features for recognition. The approach is discussed

below and future work highlighted.

9.1.1 Contributions

The DIS (see Section 4.2.1) and DKPI (see Section 4.2.2) entail the use of marker-based

MoCap to rank, identify and extract informative poses for use in the recognition process.

The approaches have the ability to handle a large variety of action sequences from data

sources. The DIS framework selects delegate postures using a statistical ranking and

joint discrimination power. Ranking and then selecting the most informative poses based

on statistical significance, instead of selecting the most informative based on cluster

generalisation and placing in time sequential order, proved to be very e↵ective. On the

other hand, DKPI determines key poses by assessing the maximum subspace scoring

149
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of the dissimilarity space of the star skeleton representation. The approach computes

local representations based on joint dissimilarity and mutual joint respect to identify

key poses.

The DKPI approach consistently achieved the higher classification accuracy for all ex-

periments (see Section 4.4.3). This may be due in part to the model containing more

selective examples of the action class which provide more training to enable an improved

recognition. Further, by selecting the most informative poses, the approaches have re-

moved the need for large-scale training sets to capture the essence of the action. For

example, considering the proposal of Barnachon et al. [22], the framework relies on man-

ual selection of k value for clustering which is an incredibly di�cult task. Conversely,

this thesis utilises an automatic k selection framework (presented in Section 3.1.7.2).

The observed improvements are in line with other work on the exemplar paradigm and

human action recognition.

The drawback that unites these two approaches is the ability to select the most suitable

representation for each action class. Further, it is important to consider the practical

implications of marker-based MoCap and the proposed approaches. There is a “start up”

cost in placing the markers on the participant, setting up the hardware and calibration.

It is not feasible for implementation of marker-based systems in the real world. While

action classification can be performed robustly in an o✏ine approach, it is important

to make decisions as quickly as possible. It is this limitation that motivates the work

presented in chapter 5 and chapter 6.

The ability to detect actions in real-time is the desire for many recognition systems.

A exemplar-based template system is introduced in chapter 5. The use of an action

model to represent each action class o↵ers an advantage over traditional approaches in

terms of characterising each class by a small number of exemplars, which has led to the

deduction of the size of the training sequences by an average of 98%. This is in contrast

to using full motion sequences to train machine learning techniques, with performance

inevitably su↵ering as the quality of training data degrades due to confusion. Chapter

5 explores this concept further and extends the use of feature selection and ranking to

improve recognition results for online application. Positively, the use of exponential map

representation enables characterisation of the posture in a more discriminative usable
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form, but also handles singularities and discontinuities. This has improved on the DIS

and DKPI (see chapter 4) and led to real-time recognition.

Conversely, marker-based MoCap is not without its challenges. for example, the cost

of hardware and time constraints to place anatomical significant markers on the par-

ticipants body. But also, the technical knowledge and expertise to utilise the system.

Therefore, it led to the question of is it possible to utilise marker-less tracking technol-

ogy for use in classification by using feature representation techniques? The answer is

found in chapter 6, that presented a feasibility study for the ability of marker-less tech-

nology for use in classification, specifically focusing on health related tasks. With the

concept extended further for age-related health implications and real world deployment

in chapter 8.

The use of marker-less technology, notably the Microsoft Kinect One, has created the

possibility of creating a low-cost human action recognition framework that is deployable

in a wide range of scenarios. Part of the Human Mobility framework presented in

chapter 8 relies on robust recognition, with Kinect data as an input. Identification and

recognition of gestures, actions and activities is not a trivial task. In chapter 6, an

evaluation of the ability to detect human action using a Microsoft Kinect 360 sensor

yielded promising results. Rich and informative features have been shown to provide an

improved feature representation for recognition [104, 106, 190, 191]. To this end, a rich

framework that encodes the spatial-temporal variations of the motion is introduced (see

Section 8.3). By utilising these features, a framework inspired by chapter 4 and chapter

5 is proposed to model and detect clinical trials. The framework extracts only those

features that are informative, disregarding those that are not - reducing the framework

size and improving training times. The performance are in line with other work on

human action recognition, see for example Section 8.6.

9.1.2 Future Work

Depth sensor technology presents a new data modality for the application of human

body extraction and MoCap extraction. This is important, as it has the ability to

remove the need for marker-based systems, resulting in the ability to deploy tracking

solutions to a wide range of scenarios (see chapter 8). An emphasis should be placed

on improving the accuracy of extracting MoCap from depth sensor technology for use
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in the exemplar paradigm. However, using this data in the exemplar paradigm further

complicates matters due to the participant validation and data noise. The exemplar

paradigm requires the manual selection of the most atypical sequence, future work should

seek to address the question; is it possible to determine what is a correct performance

of an action sequence, free from human interpretation?

The use of features, such as the temporal and spatial domain would provide a more

e�cient representation (see Section 6.3). For example, complex activities and interaction

between participants are extremely di�cult to model. Here, a more detailed, “sub-

level” feature encoding framework may provide better results. Further, while MoCap is

informative, uniting multi-modality output such as depth and RGB may yield a better

understanding of the behaviour and contextual setting of the performance.

9.2 Motion Analysis

In chapter 7 and chapter 8 a framework for analysing human motion was presented.

This approach is discussed further below and future work highlighted.

9.2.1 Contributions

Chapter 7 assessed the ability of the Microsoft Kinect One to detect age-related changes

between the young, athletic old and old adults using a digital analysis framework. The

chapter presented typical routines of clinical movements based on standardised tests

such as the Short Physical Performance Battery, Timed-Up-And-Go, Four-Meter Walk

and Balance. An important note, these frameworks (and actions) within the science

community have not been utilised up until this point. The method was supported with

a detailed quantitative analysis for detecting subtle age-related di↵erences between the

participant groups. The method used centre-of-mass as a key indicator for detecting age-

related changes that was carefully validated against a force platform, which is typically

used in research. No significant di↵erences were found between the various measurements

extracted, with a strong correlation found between the Kinect One and force platform

in jump height. These results demonstrate the suitability of the Kinect One in detecting

motion di↵erences between young and old participant groups.
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The method was evaluated using data compiled from 43 participants, however, amongst

the population of older people, few of them had serious mobility limitations. Despite

this, there were some very clear di↵erences between young and older people, for example

in balance and walking. Using marker-less technology, namely the Kinect One can aid in

the quantifiable detection of age-related mobility di↵erences. The method demonstrated

the use of a commercial, low-cost product to provide accurate motion information and

analysis robustly. The finding of chapter 7 enables the creation framework that is capable

of automatically determine age-related changes between participant groups.

The knowledge that it is possible to quantify human action into di↵erent age groups

based on mobility is extended to develop an application framework in chapter 8. The

problem of automated quantitative evaluation of motor-skeletal control disorders using

the Microsoft Kinect One in presented and a solution presented. The application enables

non-invasive monitoring and analysis of a participant to provide clinical feedback to aid

in the decision process. Conversely, the framework does not seek to remove the clinician

from the process, but provide clinically relevant feedback to support the decision making

process. The participant performed clinically validated standardised tests (e.g. sit-to-

stand, walk 4 meters), extracted from the K3Da Dataset (introduced in this thesis). The

application is split into two parts. Firstly, the ability to robustly detect the test obtained

from the sensor (see Section 9.1). Secondly, analyse and evaluate the test sequencer to

identify if any mobility issues exist. A multilevel approach to detecting human mobility

is presented, which relies on the feature representation frameworks discussed in Section

9.1, to identify those poses that may have a mobility issue. Finally, a quantitative

framework for determining the mobility “score” of the participant is introduced, and

validated.

9.2.2 Future Work

With the benefits of depth sensor technology, the Microsoft Kinect One could become

a useful tool for assessing age-related changes in a clinical setting. However, while this

thesis has introduced a novel dataset comprising of clinically relevant motions obtained

from the sensor, more varied datasets need to be introduced. It is important for the

community, which are developing health-related approaches to benchmark against clin-

ically valid datasets (see Section 7.1) to assess their impact. Further, due to the large
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inter-individual variability in age and physical capabilities, methods need to be devel-

oped that take this into account. For example, some participants could easily perform

five chair rises very quickly without losing balance or performance, while others (mainly

older people) experienced a deterioration of their performance throughout the test.

Although Section 8.5 contains a framework for analysing human mobility and quantifying

it is di�cult to generalise the results to a large proportion of the population. Given a

large enough dataset of examples this can be addressed experimentally.

9.3 Closing Remarks

This thesis has presented a collection of work aimed at bridging the gap between human

action recognition and human motion analysis, by using feature selection and extracting

approaches. This has included: (i) Defining approaches for feature extraction/repre-

sentation (ii) Combining techniques to enable real-time recognition (iii) Detecting age-

related mobility issues between participant groups. Each of these contributions has been

tested within experimental frameworks used by the community, and various functions

have been proposed for recognising and quantifying motion. These techniques have per-

mitted the reduction of the training size to only key informative features, to improve

e�ciency and reduce latency. With an action class containing su�ciently rich samples,

it is possible to identify actions with a high confidence. Further, with the action known,

a quantitative framework for determining the level of mobility, in relation to the sample

is defined, leading to a clinically viable framework.
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